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Bab 1 Integral Riemann

1.1 Integral Riemann: Definisi

Dalam baian ini akan diikuti prosedur yang umum digunakan dalam matakuliah kalkulus un-
tuk mendefinisikan integral Riemann yaitu merupakan limit dari jumlah Riemann ketika pan-
jang partisi terbesar mendekati nol. Karena diasumsikan bahwa pembaca telah familiar-
setidaknya secara informal-dengan integral dari mata kuliah kalkulus, disubbab ini tidak akan
diberikan motivasi tentang integral tersebut, atau membahas interpretasinya sebagai "luas
di bawah grafik," atau aplikasinya dalam fisika, teknik, ekonomi, dan sebagainya. Sebaliknya,
akan fokus pada aspek matematis murni dari integral tersebut.

Pertama-tama definisikan beberapa istilah dasar yang akan sering digunakan.

1.1.1 Partisi dan Partisi Bertanda

Jika I := [a, b] adalah interval tertutup terbatas di R, maka partisi dari I adalah himpunan
hingga terurut

P := (x0, x1, . . . , xn)

dari titik-titik dalam I sehingga

a = x0 < x1 < · · · < xn = b.

Titik-titik dalam P digunakan untuk membagi I = [a, b] menjadi subinterval-subinterval yang
tidak saling tumpang tindih:

I1 := [x0, x1], I2 := [x1, x2], . . . , In := [xn−1, xn].

Lebih lanjut, sering dinotasikan juga partisi P oleh P := {[xi−1, xi]}n
i=1 dan norm (atau mesh)

dari P didefinisikan sebagai:

∥P∥ := max{x1 − x0, x2 − x1, . . . , xn − xn−1}.

Jika sebuah titik x∗
i telah dipilih dari setiap subinterval Ii = [xi−1, xi], untuk i = 1, 2, . . . , n,

maka titik-titik tersebut disebut sebagai tag/tanda dari subinterval Ii. Himpunan pasangan
terurut

Ṗ := {([xi−1, xi], x∗
i )}n

i=1

dari subinterval-subinterval dan tanda yang sesuai disebut sebagai partisi bertanda dari I.
Jika Ṗ adalah partisi bertanda yang diberikan di atas, maka jumlah Riemann suatu fungsi

f : [a, b] → R sesuai dengan Ṗ didefinisikan sebagai:

S(f, Ṗ) :=
n∑

i=1
f(x∗

i )(xi − xi−1).
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1.1. INTEGRAL RIEMANN: DEFINISI 1. INTEGRAL RIEMANN

Amati bahwa jika fungsi f positif pada [a, b], maka jumlah Riemann S(f, Ṗ) adalah jumlah
dari luas n persegi panjang yang lebarnya adalah xi − xi−1 dan panjangnya adalah f(x∗

i ).

1.1.2 Definisi Integral Riemann

Sekarang didefinisikan integral Riemann dari suatu fungsi f pada interval [a, b].

Definisi 1.1
Fungsi f : [a, b] → R dikatakan terintegral Riemann pada [a, b] jika terdapat suatu bi-
langan L ∈ R sehingga untuk setiap ε > 0 terdapat δε > 0 sedemikian sehingga jika Ṗ
adalah partisi bertanda pada [a, b] dengan ∥Ṗ∥ < δε, maka∣∣∣S(f ; Ṗ) − L

∣∣∣ < ε.

Himpunan semua fungsi yang terintegral Riemann pada [a, b] dinotasikan sebagai
R[a, b].

Pada Teorema selanjutnya diberikan bahwa jika f ∈ R[a, b], maka nilai L dapat diperoleh
secara tunggal dan disebut sebagai integral Riemann dari f pada [a, b]. Sebagai pengganti L,
biasanya ditulis

L =
∫ b

a
f atau

∫ b

a
f(x) dx.

Harus dipahami bahwa huruf apa pun selain x dapat digunakan dalam ekspresi terakhir, se-
lama tidak menimbulkan ambiguitas.

Teorema 1.1
Jika f ∈ R[a, b], maka nilai integralnya tunggal.

Bukti. MisalkanL1 danL2 adalah nilai dari integral Riemanndari fungsi f dan ambil sebarang
ε > 0. Berdasarkan definisi dari integral Riemann didapatkan δε/2,1 > 0 sehingga jika Ṗ1

adalah partisi bertanda dengan ∥Ṗ1∥ < δε/2,1, maka∣∣∣S(f ; Ṗ1) − L1
∣∣∣ < ε/2.

Juga terdapat δε/2,2 > 0 sehingga jika Ṗ2 adalah partisi bertanda dengan ∥Ṗ2∥ < δε/2,2, maka∣∣∣S(f ; Ṗ2) − L2
∣∣∣ < ε/2.

Sekarang ambil δ := min{δε/2,1, δε/2,2} > 0 dan pilih partisi bertanda Ṗ dengan ∥Ṗ∥ < δ.
Karena ∥Ṗ∥ < δε/2,1 dan ∥Ṗ∥ < δε/2,2, maka∣∣∣S(f ; Ṗ) − L1

∣∣∣ < ε/2 dan
∣∣∣S(f ; Ṗ) − L2

∣∣∣ < ε/2.
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1. INTEGRAL RIEMANN 1.1. INTEGRAL RIEMANN: DEFINISI

Sehingga dengan menggunakan Ketaksamaan Segitiga diperoleh bahwa

|L1 − L2| =
∣∣∣L1 − S(f ; Ṗ) + S(f ; Ṗ) − L2

∣∣∣ ≤
∣∣∣L1 − S(f ; Ṗ)

∣∣∣+ ∣∣∣S(f ; Ṗ) − L2
∣∣∣ < ε/2+ε/2 = ε.

Karena ε > 0 sebarang, maka diperoleh L1 = L2.
■

Teorema 1.2
Jika g dapat diintegralkan secara Riemann pada [a, b] dan jika f(x) = g(x) kecuali pada
sejumlah titik berhingga di [a, b], maka f juga dapat diintegralkan secara Riemann dan∫ b

a
f =

∫ b

a
g.

Bukti. Pada bagian ini akan dibuktikan bahwa jika n bilangan asli dan a1, a2, · · · , an adalah
n titik berbeda pada [a, b] sehingga

f(x)

 ̸= g(x), x ∈ {a1, a2, · · · , an}

= g(x), x /∈ {a1, a2, · · · , an}

maka ∫ b

a
f =

∫ b

a
g.

Metode pembuktian yang digunakan adalah induksi matematika. Sekarang mulai dengan
validasi untuk n = 1, yakni dimisalkan f(x) = g(x) kecuali untuk x ̸= a1. Untuk setiap par-
tisi bertanda Ṗ := {([xi−1, xi], x∗

i )}n
i=1, suku-suku dalam kedua jumlah S(f ; Ṗ) dan S(g; Ṗ)

sama kecuali pada paling banyak dua titik. Sekarang perhatikan beberapa kondisi berikut
yang mungkin terjadi:

Kondisi 1 Tidak ada j ∈ {1, 2, · · · , n} sehingga x∗
j = a1

Pada kondisi ini didaptakan

|S(f ; Ṗ) − S(g; Ṗ)| =
∣∣∣∣∣

n∑
i=1

(f(x∗
i ) − g(x∗

i ))(xi − xi−1)
∣∣∣∣∣ = 0.

Kondisi 2 Ada tepat satu j ∈ {1, 2, · · · , n} sehingga x∗
j = a1

Pada kondisi ini didaptakan

|S(f ; Ṗ) − S(g; Ṗ)| =
∣∣∣∣∣

n∑
i=1

(f(xi) − g(xi))(xi − xi−1)
∣∣∣∣∣ = |(f(a1) − g(a1))(xj − xj−1)|

≤ |f(a1) − g(a1)| |xj − xj−1| ≤ |f(a1) − g(a1)| ∥Ṗ∥.

Terapkan ketaksamaan segitiga diperoleh

|S(f ; Ṗ) − S(g; Ṗ)| ≤ (|f(a1)| + |g(a1)|) ∥Ṗ∥.
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1.1. INTEGRAL RIEMANN: DEFINISI 1. INTEGRAL RIEMANN

Kondisi 3 Ada tepat satu j ∈ {1, 2, · · · , n} sehingga x∗
j = x∗

j+1 = c: ini terjadi pada saat
a1 adalah titik ujung pada subinterval yakni a1 = xj untuk suatu j ≥ 1 dan pilih tanda
a1 = x∗

i = x∗
i+1

Pada kondisi ini didaptakan

|S(f ; Ṗ) − S(g; Ṗ)| =
∣∣∣∣∣

n∑
i=1

(f(x∗
i ) − g(x∗

i ))(xi − xi−1)
∣∣∣∣∣

= |(f(a1) − g(a1))(xj − xj−1) + (f(a1) − g(a1))(xj+1 − xj)|

≤ |f(a1) − g(a1)| |xj − xj−1| + |f(a1) − g(a1)| |xj+1 − xj |

≤ 2 |f(a1) − g(a1)| ∥Ṗ∥.

Terapkan ketaksamaan segitiga diperoleh

|S(f ; Ṗ) − S(g; Ṗ)| ≤ 2 (|f(a1)| + |g(a1)|) ∥Ṗ∥.

Berdasarkan ketiga kondisi di atas didapatkan

|S(f ; Ṗ) − S(g; Ṗ)| ≤ 2 (|f(a1)| + |g(a1)|) ∥Ṗ∥.

Sekarang, dimisalkan L =
∫ b

a
g dan ambil sebarang ε > 0, kemudian pilih δ1 > 0 sehingga

δ1 < ε/(4(|f(a1)| + |g(a1)|)) dan δ2 > 0 sehingga jika ∥Ṗ∥ < δ2 maka |S(g; Ṗ) − L| < ε/2.
Selanjutnya, ambil δ = min(δ1, δ2) dan Ṗ yang memenuhi ∥Ṗ∥ < δ2 ∥Ṗ∥ < δ, didapatkan

|S(f ; Ṗ) − L| ≤ |S(f ; Ṗ) − S(g; Ṗ)| + |S(g; Ṗ) − L|

< 2 (|f(a1)| + |g(a1)|) ∥Ṗ∥ + ε/2 < 2 (|f(a1)| + |g(a1)|) δ1 + ε/2

= ε/2 + ε/2 = ε.

Dengandemikian, fungsi f dapat diintegralkan dengannilai integralL. Selanjutnya asumsikan
bahwa pernyataan benar untuk n = k dan perlu memvalidasi bahwa jika

f(x)

 ̸= g(x), x ∈ {a1, a2, · · · , ak+1}

= g(x), x /∈ {a1, a2, · · · , ak+1}

maka
∫ b

a
f =

∫ b

a
g. Pertama didefinisikan

g̃(x) :=

 f(x), x ∈ {a1, a2, · · · , ak}

g(x), x /∈ {a1, a2, · · · , ak}

dan berdasarkan asumsi induksi matematika yaitu pernyataan benar untuk n = k, diperoleh∫ b

a
g̃ =

∫ b

a
g. Selanjutnya amati bahwa f(x) = g̃(x) kecuali untuk x ̸= ak+1, yang artinya
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1. INTEGRAL RIEMANN 1.1. INTEGRAL RIEMANN: DEFINISI

berdasarkan hasil sebelumnya didapatkan
∫ b

a
g̃ =

∫ b

a
f. Sehingga bisa disimpulkan

∫ b

a
f =∫ b

a
g.

■

Jika hanya digunakan definisi, untuk menunjukkan bahwa suatu fungsi f dapat diinte-
gralkan secara Riemann, haruslah (i) diketahui (atau menebak dengan benar) nilai L dari in-
tegral, dan (ii) dikonstruksi δ yang bergantung pada sebarang ε > 0. Penentuan L kadang
dilakukan dengan menghitung jumlah Riemann dan menebak nilai L. Penentuan δ biasanya
sulit dilakukan.

Dalam praktiknya, biasanya untuk menunjukkan bahwa f ∈ R[a, b] dengan menggunakan
beberapa teorema yang akan diberikan nanti.

Contoh 1.1

Buktikan bahwa setiap fungsi konstan f pada [a, b] termasuk dalam R[a, b] dan
∫ b

a
f =

c(b− a)..
Penyelesaian: Misalkan f(x) = c untuk semua x ∈ [a, b]. Jika Ṗ := {([xi−1, xi], x∗

i )}n
i=1

adalah suatu partisi bertanda pada [a, b], maka jelas bahwa

S(f ; Ṗ) =
n∑

i=1
c(xi − xi−1) = c(b− a).

Dengan demikian, untuk sebarang ε > 0, dapat dipilih δ = 1 sehingga jika ∥Ṗ∥ < δ,
maka

|S(f ; Ṗ) − (k(b− a))| = 0 < ε.

Karena ε sebarang, bisa disimpulkan bahwa f ∈ R[a, b] dan∫ b

a
f = c(b− a).

Contoh 1.2
Misalkan g : [0, 4] → R didefinisikan oleh

g(x) :=

 3, x ∈ [0, 1],

4. x ∈ (1, 4].

Buktikan bahwa g ∈ R[0, 4] dan

L :=
∫ 3

0
g = 15.

Penyelesaian: Pertama, misalkan Ṗ := {([xi−1, xi], x∗
i )}n

i=1 adalah partisi bertanda dari
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1.1. INTEGRAL RIEMANN: DEFINISI 1. INTEGRAL RIEMANN

[0, 4] dengan norm < δ; akan ditunjukkan cara menentukan δ = δ(ε) yang bergantung
pada ε agar |S(g; Ṗ) − 15| < ε. Pada contoh ini perlu dilihat untuk beberapa kondisi:

Kondisi 1: Adam sehingga xm = 1
Pada kondisi ini bisa langsung dihitung

S(f ; Ṗ) =
m∑

i=1
3(xi − xi−1) +

n∑
i=m+1

4(xi − xi−1) = 3(xm − x0) + 4(xn − xm) = 15.

Dengan demikian, diperoleh

|S(f ; Ṗ) − (k(b− a))| = 0.

Kondisi 2: Adam sehingga xm < 1 < xm+1 dan x∗
m+1 ≤ 1

Perhatikan bahwa

15 = 3(1 − 0) + 4(4 − 1)

= 3(1 − xm + xm − xm−1 + xm−1 − xm−2 + · · · + x1 − x0)

+4(xn − xn−1 + xn−1 − xn−2 + · · · + xm+2 − xm+1 + xm+1 − 1)

= 3(1 − xm) + 3(xm − xm−1 + xm−1 − xm−2 + · · · + x1 − x0)

+4(xn − xn−1 + xn−1 − xn−2 + · · · + xm+2 − xm+1) + 4(xm+1 − 1)

= 3(1 − xm) + 4(xm+1 − 1) +
m∑

i=1
3(xi − xi−1) +

n∑
i=m+2

4(xi − xi−1).

Sehingga didapatkan

|S(f ; Ṗ) − 15|

=

∣∣∣∣∣∣
m+1∑

i=1
3(xi − xi−1) +

n∑
i=m+2

4(xi − xi−1)

− 15

∣∣∣∣∣∣
=
∣∣∣∣∣
 m∑

i=1
3(xi − xi−1) + 3(xm+1 − xm) +

n∑
i=m+2

4(xi − xi−1)


−

3(1 − xm) + 4(xm+1 − 1) +
m∑

i=1
3(xi − xi−1) +

n∑
i=m+2

4(xi − xi−1)

 ∣∣∣∣∣
= |3(xm+1 − xm) − 3(1 − xm) − 4(xm+1 − 1)|

= |−(xm+1 − 1)| < δ.

Kondisi 3: Adam sehingga xm < 1 < xm+1 dan x∗
m+1 > 1

|S(f ; Ṗ) − 15|
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=

∣∣∣∣∣∣
 m∑

i=1
3(xi − xi−1) +

n∑
i=m+1

4(xi − xi−1)

− 15

∣∣∣∣∣∣
=
∣∣∣∣∣
 m∑

i=1
3(xi − xi−1) + 4(xm+1 − xm) +

n∑
i=m+2

4(xi − xi−1)


−

3(1 − xm) + 4(xm+1 − 1) +
m∑

i=1
3(xi − xi−1) +

n∑
i=m+2

4(xi − xi−1)

 ∣∣∣∣∣
= |4(xm+1 − xm) − 3(1 − xm) − 4(xm+1 − 1)|

= |(1 − xm)| < δ.

Dengan melihat hasil pada Kondisi 1, Kondisi 2 dan Kondisi 3 di atas diperoleh

|S(f ; Ṗ) − 15| < δ.

Sekarang pilih δ ≤ ε didapatkan

|S(f ; Ṗ) − 15| < ε.

Dengan demikian, ditemukan bahwa |S(g; Ṗ) − 15| < ε ketika ∥Ṗ∥ < δ dengan δ ≤ ε.

Karena ε > 0 sebarang, ini telah membuktikan bahwa g ∈ R[0, 4], dan bahwa
∫ 4

0
g = 15,

sebagaimana yang diinginkan.

Contoh 1.3
Misalkan h(x) := x untuk x ∈ [0, 1]; akan ditunjukkan bahwa h ∈ R[0, 1] dengan∫ 1

0
h = 1

2 .

Penyelesaian: Misalkan Ṗ := {([xi−1, xi], x∗
i )}n

i=1 adalah partisi bertanda dari [0, 1] den-
gan norm< δ; akan ditunjukkan caramenentukan δ = δ(ε) yang bergantung pada ε agar
|S(h; Ṗ) − 1

2 | < ε. Pertama, perhatikan bahwa

1
2 = 1

2(12 − 02)

= 1
2(x2

n − x2
n−1 + x2

n−1 − x2
n−2 + · · · + x2

1 − x2
0)

= 1
2

n∑
i=1

(x2
i − x2

i−1)

=
n∑

i=1

1
2(xi + xi−1)(xi − xi−1)
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1.1. INTEGRAL RIEMANN: DEFINISI 1. INTEGRAL RIEMANN

=
n∑

i=1
h(qi)(xi − xi−1)

dengan qi := 1
2(xi + xi−1) ∈ [xi−1, xi] untuk i = 1, 2, · · · , n. Sehingga diperoleh

|S(h; Ṗ) − 1
2 | =

∣∣∣∣∣
n∑

i=1
h(x∗

i )(xi − xi−1) −
n∑

i=1
h(qi)(xi − xi−1)

∣∣∣∣∣
≤

n∑
i=1

|x∗
i − qi|(xi − xi−1) ≤ δ

n∑
i=1

(xi − xi−1) = δ · 1 = δ.

Dengan demikian, denganmemilih δ := ε, maka dapat ditelusuri kembali argumen untuk

menyimpulkan bahwa h ∈ R[0, 1] dan
∫ 1

0
h =

∫ 1

0
x dx = 1

2 .

1.1.3 Sifat-sifat Integral

Kesulitan dalam menentukan nilai integral dan δ menunjukkan bahwa akan sangat berguna
untukmemiliki beberapa teorema umum. Hasil pertama dalam arah ini memungkinkanmem-
bentuk kombinasi aljabar tertentu dari fungsi-fungsi yang dapat diintegralkan.

Teorema 1.3
Misalkan f dan g adalah fungsi dalam R[a, b]. Diperoleh

(a) Jika k ∈ R, fungsi kf termasuk dalam R[a, b] dan∫ b

a
kf = k

∫ b

a
f.

(b) Fungsi f + g termasuk dalam R[a, b] dan∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

(c) Jika f(x) ≤ g(x) untuk semua x ∈ [a, b], maka∫ b

a
f ≤

∫ b

a
g.

Bukti. Jika P = {([xi−1, xi], ti)}n
i=1 adalah partisi bertanda dari [a, b], maka mudah untuk

menunjukkan bahwa

S(kf ;P) = kS(f ;P), S(f + g;P) = S(f ;P) + S(g;P),

S(f ;P) ≤ S(g;P).
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1. INTEGRAL RIEMANN 1.1. INTEGRAL RIEMANN: DEFINISI

Diserahkan kepada pembaca untuk menunjukkan bahwa pernyataan (a) mengikuti dari
persamaan pertama. Sebagai contoh, berikut diberikan pembuktian bagian (b) dan (c) secara
lengkap.

Diberikan ε > 0, akan digunakan argumen dalam pembuktian Teorema Keunikan 1.1 untuk
membangun sebuah bilangan δε/2 > 0 sehingga jika Ṗ adalah partisi bertanda dengan ∥Ṗ∥ <
δε/2, maka kedua kondisi berikut berlaku:∣∣∣∣∣S(f ; Ṗ) −

∫ b

a
f

∣∣∣∣∣ < ε/2,
∣∣∣∣∣S(g; Ṗ) −

∫ b

a
g

∣∣∣∣∣ < ε/2. (1.1)

Untuk membuktikan (b), perhatikan bahwa∣∣∣∣∣S(f + g; Ṗ) −
(∫ b

a
f +

∫ b

a
g

)∣∣∣∣∣ =
∣∣∣∣∣S(f ; Ṗ) + S(g; Ṗ) −

∫ b

a
f −

∫ b

a
g

∣∣∣∣∣
≤

∣∣∣∣∣S(f ; Ṗ) −
∫ b

a
f

∣∣∣∣∣+
∣∣∣∣∣S(g; Ṗ) −

∫ b

a
g

∣∣∣∣∣
< ε/2 + ε/2 = ε.

Karena ε > 0 bersifat sembarang, bisa disimpulkan bahwa f + g ∈ R[a, b] dan integralnya
merupakan jumlah dari integral f dan g.

Untuk membuktikan (c), perhatikan bahwa penerapan ketaksamaan (1.1) memberikan∫ b

a
f − ε/2 < S(f ; Ṗ), S(g; Ṗ) <

∫ b

a
g + ε/2.

Jika digunakan fakta bahwa S(f ; Ṗ) ≤ S(g; Ṗ), maka diperoleh∫ b

a
f ≤

∫ b

a
g + ε.

Namun, karena ε > 0 bersifat sembarang, bisa simpulkan bahwa∫ b

a
f ≤

∫ b

a
g.

■

1.1.4 Teorema Keterbatasan

Sekarang akan ditunjukkan bahwa fungsi yang tidak terbatas tidak dapat diintegralkan Rie-
mann.

Teorema 1.4
Jika f ∈ R[a, b], maka f terbatas pada [a, b].
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1.1. INTEGRAL RIEMANN: DEFINISI 1. INTEGRAL RIEMANN

Bukti. Misalkan f adalah fungsi yang tidak terbatas dalam R[a, b] dengan integral L. Maka
ada δ > 0 sehingga jika Ṗ adalah partisi bertanda dari [a, b] dengan ∥Ṗ∥ < δ, maka berlaku

|S(f ; Ṗ) − L| < 1,

yang menyiratkan bahwa
|S(f ; Ṗ)| < |L| + 1. (1.2)

Sekarang, misalkan Q = {[xi−1, xi]}n
i=1 adalah partisi dari [a, b] dengan ||Q|| < δ. Karena |f |

tidak terbatas pada [a, b], maka ada setidaknya satu subinterval dalamQ, misalnya [xk−1, xk],
di mana |f | tidak terbatas—karena jika |f | terbatas pada setiap subinterval [xi−1, xi] olehMi,
maka f terbatas pada [a, b] oleh max{M1, . . . ,Mn}.

Sekarang pilih tanda untuk Q yang akan memberikan kontradiksi terhadap (1.2). Beri
tanda Q dengan ti := xi untuk i ̸= k dan pilih tk ∈ [xk−1, xk] sehingga

|f(tk)(xk − xk−1)| > |L| + 1 +

∣∣∣∣∣∣
∑
i ̸=k

f(ti)(xi − xi−1)

∣∣∣∣∣∣ .
Dari Ketidaksamaan Segitiga (dalam bentuk |A+B| ≥ |A| − |B|), diperoleh

|S(f ;Q)| ≥ |f(tk)(xk − xk−1)| −

∣∣∣∣∣∣
∑
i ̸=k

f(ti)(xi − xi−1)

∣∣∣∣∣∣ > |L| + 1,

yang bertentangan dengan (*). ■

Bagian ini ditutup dengan sebuah contoh fungsi yang tidak kontinu di setiap bilangan ra-
sional dan tidak monoton, tetapi tetap dapat diintegralkan dalam pengertian Riemann.

1.1.5 Latihan

1. Jika I := [0, 4], hitung norm dari partisi berikut:

(a) P1 := (0, 1, 2, 4),

(b) P2 := (0, 2, 3, 4),

(c) P3 := (0, 1, 1.5, 2, 3, 4, 4),

(d) P4 := (0.5, 2.5, 3.5, 4).

2. Jika f(x) := x2 untuk x ∈ [0, 4], hitung jumlah Riemann berikut, di mana Pi memiliki titik
partisi seperti pada Latihan 1, dan tanda dipilih sebagaimana diberikan sebagai berikut:

(a) P1 dengan tanda di titik kiri subinterval.

(b) P1 dengan tanda di titik kanan subinterval.

(c) P2 dengan tanda di titik kiri subinterval.
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1. INTEGRAL RIEMANN 1.1. INTEGRAL RIEMANN: DEFINISI

(d) P2 dengan tanda di titik kanan subinterval.

3. (a) Misalkan f(x) = 2 jika 0 ≤ x < 1 dan f(x) = 1 jika 1 ≤ x ≤ 2. Tunjukkan bahwa
f ∈ R[0, 2] dan hitung integralnya.

(b) Misalkan h(x) = 2 jika 0 ≤ x < 1, h(1) = 3, dan h(x) = 1 jika 1 < x ≤ 2. Tunjukkan
bahwa h ∈ R[0, 2] dan hitung integralnya.

4. Gunakan Induksi Matematika dan Teorema 1.3 untuk menunjukkan bahwa jika f1, . . . , fn ∈

R[a, b] dan k1, . . . , kn ∈ R, maka kombinasi linear f =
n∑

i=1
kifi termasuk R[a, b] dan

∫ b

a
f =

n∑
i=1

ki

∫ b

a
fi.

5. Jika f ∈ R[a, b] dan |f(x)| ≤ M untuk semua x ∈ [a, b], tunjukkan bahwa∣∣∣∣∣
∫ b

a
f

∣∣∣∣∣ ≤ M(b− a).

6. Jika f ∈ R[a, b] dan (Pn) adalah urutan partisi bertanda dari [a, b] sehingga ∥Pn∥ → 0,
buktikan bahwa ∫ b

a
f = lim

n→∞
S(f ;Pn).

7. Misalkan f terbatas pada [a, b] dan ada dua urutan partisi bertanda dari [a, b] sehingga
∥Pn∥ → 0 dan ∥Qn∥ → 0, tetapi

lim
n→∞

S(f ;Pn) ̸= lim
n→∞

S(f ;Qn).

Tunjukkan bahwa f /∈ R[a, b].

8. Misalkan c ≤ d adalah titik-titik dalam [a, b]. Jika φ : [a, b] → R memenuhi φ(x) = α > 0
untuk x ∈ [c, d] dan φ(x) = 0 di tempat lain dalam [a, b], buktikan bahwa φ ∈ R[a, b] dan
bahwa ∫ b

a
φ = α(d− c).

(Petunjuk: Diberikan ε > 0, ambil δ = ε/4α dan tunjukkan bahwa jika ∥Ṗ∥ < δ, maka dimiliki

α(d− c− 2δ) ≤ S(φ; Ṗ) ≤ α(d− c+ 2δ).

9. Misalkan 0 ≤ a < b,Q(x) := x2 untuk x ∈ [a, b], dan P = {[xi−1, xi]}n
i=1 menjadi partisi dari

[a, b]. Untuk setiap i, biarkan qi menjadi akar kuadrat positif dari

1
3
(
x2

i−1 + x2
i + xi−1xi

)
.

(a) Tunjukkan bahwa qi memenuhi 0 ≤ xi−1 ≤ qi ≤ xi.

(b) Tunjukkan bahwa Q(qi)(xi − xi−1) = 1
3
(
x3

i − x3
i−1

)
.
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1.2. FUNGSI TERINTEGRAL RIEMANN 1. INTEGRAL RIEMANN

(c) Jika Q̇ adalah partisi bertanda dengan subinterval yang sama seperti P dan tanda qi,
tunjukkan bahwa

S(Q; Q̇) = 1
3(b3 − a3).

(d) Tunjukkan bahwa Q ∈ R[a, b] dan∫ b

a
x2 dx = 1

3(b3 − a3).

10. Jika f ∈ R[a, b] dan c ∈ R, didefinisikan g pada [a+c, b+c] dengan g(y) = f(y−c). Buktikan
bahwa g ∈ R[a+ c, b+ c] dan bahwa ∫ b+c

a+c
g =

∫ b

a
f.

1.2 Fungsi Terintegral Riemann

Pada subbab ini dimulai dengan pembuktian Kriteria Cauchy. Selanjutnya, dibuktikan Teo-
rema Squeeze, yang akan digunakan untuk menetapkan keterintegralan Riemann dari beber-
apa kelas fungsi (fungsi tangga, fungsi kontinu, dan fungsi monoton). Terakhir, dibuktikan
Teorema jumlahan.

Pada subbab sebelumnya dijelaskan bahwa untuk menggunakan definisi integral memer-
lukan pengetahuan tentang nilai integral. Kriteria Cauchy di bawah ini menghilangkan ke-
butuhan ini, tetapi dengan konsekuensi bahwa harus dipertimbangkan dua jumlah Riemann,
bukan hanya satu.

Teorema 1.5 Kriteria Cauchy

Fungsi f : [a, b] → R anggota dari R[a, b] jika dan hanya jika untuk setiap ε > 0 ada
ηε > 0 sehingga jika Ṗ dan Q̇ merupakan partisi bertanda atas [a, b] dengan ∥Ṗ∥ < ηε

dan ∥Q̇∥ < ηε, maka
|S(f ; Ṗ) − S(f ; Q̇)| < ε.

Bukti. (⇒) Misalkan f ∈ R[a, b] dengan nilai integral L. Berdasarkan definisi integral, un-
tuk sebarang ε > 0 ada ηε := δε/2 > 0 sedemikian sehingga jika Ṗ , Q̇ adalah partisi
bertanda dengan ∥Ṗ∥ < ηε dan ∥Q̇∥ < ηε, maka

|S(f ; Ṗ) − L| < ε/2 dan |S(f ; Q̇) − L| < ε/2.

Oleh karena itu, didapat

|S(f ; Ṗ) − S(f ; Q̇)| ≤ |S(f ; Ṗ) − L| + |L− S(f ; Q̇)| ≤ ε/2 + ε/2 = ε.

(⇐) Misalkan untuk setiap ε > 0 ada ηε > 0 sehingga jika Ṗ dan Q̇ merupakan partisi
bertanda atas [a, b] dengan ∥Ṗ∥ < ηε dan ∥Q̇∥ < ηε, maka |S(f ; Ṗ) − S(f ; Q̇)| < ε.
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Pilih ε = 1/n dengan n ∈ N didapatkan bilangan positif η1/n sehingga jika dua partisi
bertanda Ṗ dan Q̇ memenuhi ∥Ṗ∥ < η1/n dan ∥Q̇∥ < η1/n, maka |S(f ; Ṗ) − S(f ; Q̇)| <
1/n.

Selanjutnya didefinisikan barisan bilangan (δn) dengan δn := min{η1, η1/2, . . . , η1/n}.
Perhatikan bahwa δn ≥ δn+1 untuk n ∈ N dan jika dua partisi bertanda Ṗ dan Q̇
memenuhi ∥Ṗ∥ < δn dan ∥Q̇∥ < δn maka ∥Ṗ∥ < η1/n dan ∥Q̇∥ < η1/n sehingga diper-
oleh |S(f ; Ṗ) − S(f ; Q̇)| < 1/n.

Sekarangmisalkan untuk setiapn ∈ N, diberikan partisi bertanda Ṗn dengan ∥Ṗn∥ < δn.
Jelas, jikam > nmaka ∥Ṗm∥ < δm < δn sehingga keduanya Ṗm dan Ṗn memiliki norm
< δn dan diperoleh

|S(f ; Ṗm) − S(f ; Ṗn)| < 1/n untuk m > n. (1.3)

Akibatnya, barisan (S(f ; Ṗm))∞
m=1 adalah barisan Cauchy dalam R. Oleh karena itu

barisan ini konvergen di R dan bisa dimisalkan A adalah nilai konvergensinya yaitu
A := lim

m→∞
S(f ; Ṗm).

Kemudian ambil limit pada (1.3) atasm, diperoleh

|S(f ; Ṗn) −A| ≤ 1/n untuk semua n ∈ N.

Untuk melihat bahwa A adalah integral Riemann dari f , ambil sebarang ε > 0, dan pilih
K ∈ N sehinggaK > 2/ε. Jika Q̇ adalah partisi bertanda dengan ∥Q̃∥ < δK , maka

|S(f ; Q̇) −A| ≤ |S(f ; Q̇) − S(f ; ṖK)| + |S(f ; ṖK) −A| ≤ 1/K + 1/K < ε.

Karena ε > 0 diambil sebarang, maka f ∈ R[a, b] dengan integral A.
■

Contoh 1.4
Misalkan g : [0, 3] → R adalah fungsi yang didefinisikan pada Contoh 1.2 yang diberikan
oleh

g(x) :=

 3, x ∈ [0, 1],

4. x ∈ (1, 4].

Buktikan bahwa g ∈ R[a, b].

Penyelesaian: Pada Contoh 1.2, bisa dilihat bahwa jika Ṗ adalah partisi bertanda dari
[0, 4] dengan norm ∥Ṗ∥ < η, maka

15 − η ≤ S(g; Ṗ) ≤ 15 + η.
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Dengan demikian, jika Q̇ adalah partisi bertanda lain dengan ∥Q̇∥ < η, maka

15 − η ≤ S(g; Q̇) ≤ 15 + η.

Jika kedua pertidaksamaan dikurangkan, diperoleh

|S(g; Ṗ) − S(g; Q̇)| ≤ 2η.

Untuk membuat hasil akhir ini< ε, pilih η < ε/2. Sehingga berdasarkan Kriteria Cauchy
diperoleh bahwa g ∈ R[0, 4].

Kriteria Cauchy dapat digunakan untuk menunjukkan bahwa fungsi f : [a, b] → R tidak
dapat diintegralkanmenurut Riemann. Untukmembuktikannya, perlu ditunjukkan bahwa: Ada
ε0 > 0 sehingga untuk setiap η > 0, terdapat partisi bertanda Ṗ dan Q̇ dengan ∥Ṗ∥ < η dan
∥Q̇∥ < η sehingga

|S(f ; Ṗ) − S(f ; Q̇)| ≥ ε0.

Contoh 1.5
Misalkan g : [0, 1] → R adalah fungsi yang didefinisikan oleh

g(x) :=

 1, x bilangan rasional,

0. x bilangan irasional.

Buktikan bahwa g /∈ R[a, b].
Penyelesaian: Ambil ε0 := 1

2 dan ambil sebarang η > 0 dan Ṗ dan Q̇ adalah dua partisi

bertanda dengan ∥Ṗ∥, ∥Q̇∥ < η. Jika semua tanda dari Ṗ adalah bilangan rasional
maka S(f ; Ṗ) = 1, sedangkan jika semua tanda dari Q̇ adalah bilangan irasional maka
S(f ; Q̇) = 0. Sehingga didapatkan

|S(f ; Ṗ) − S(f ; Q̇)| ≥ ε0

dan oleh karena itu g /∈ R[a, b].

1.2.1 Teorema Apit

Pada definisi integral Riemann, ada dua jenis kesulitan. Pertama, untuk setiap partisi, terda-
pat pilihan tanda yang tak terhingga banyaknya. Kedua, terdapat partisi-partisi tak terhingga
yang memiliki norm kurang dari jumlah tertentu. Kita telah mengalami tantangan ini dalam
contoh-contoh dan bukti-bukti teorema.

Sekarang, pada subbab ini diberikan sifat pentinguntuk membuktikan keterintegralan Rie-
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mann yang disebutTeoremaApit, yang akanmemberikan sedikit bantuan dari kesulitan terse-
but. Teorema inimenyatakan bahwa jika suatu fungsi dapat dibatasi diantara dua fungsi yang
diketahui dapat diintegralkanmenurut Riemann, maka dapat disimpulkan bahwa fungsi terse-
but juga dapat diintegralkan menurut Riemann. Kondisi-kondisi yang tepat diberikan dalam
pernyataan teorema ini.

Teorema 1.6 Teorema Apit

Misalkan f : [a, b] → R. Fungsi f terintegral Riemann pada [a, b] jika dan hanya jika untuk
setiap ε > 0, terdapat fungsi αε dan ωε dalam R[a, b] sehingga

αε(x) ≤ f(x) ≤ ωε(x) untuk setiap x ∈ [a, b],

dan ∫ b

a
(ωε − αε) < ε.

Bukti. (⇒) Ambil αε = ωε = f untuk setiap ε > 0.
(⇐) Misalkan ε > 0. Karena αε dan ωε berada dalamR[a, b], terdapat δε > 0 sehingga jika

Ṗ adalah partisi bertanda dengan ∥Ṗ∥ < δε, maka∣∣∣∣∣S(αε; Ṗ) −
∫ b

a
αε

∣∣∣∣∣ < ε dan
∣∣∣∣∣S(ωε; Ṗ) −

∫ b

a
ωε

∣∣∣∣∣ < ε.

Dari ketidaksamaan ini diperoleh bahwa∫ b

a
αε − ε < S(αε; Ṗ) dan S(ωε; Ṗ) <

∫ b

a
ωε + ε.

Karena
αε(x) ≤ f(x) ≤ ωε(x) untuk setiap x ∈ [a, b],

diperoleh S(αε;P) ≤ S(f ; Ṗ) ≤ S(ωε; Ṗ), sehingga∫ b

a
αε − ε < S(f ; Ṗ) <

∫ b

a
ωε + ε.

Jika Q̇ adalah partisi bertanda lain dengan ∥Q̇∥ < δε, maka juga berlaku∫ b

a
αε − ε < S(f ; Q̇) <

∫ b

a
ωε + ε.

Jika kedua ketidaksamaan ini dikurangkan dan menggunakan asumsi bahwa∫ b

a
(ωε − αε) < ε,

diperoleh bahwa

|S(f ; Ṗ) − S(f ; Q̇)| <
∫ b

a
ωε −

∫ b

a
αε + 2ε =

∫ b

a
(ωε − αε) + 2ε < 3ε.
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Karena ε > 0 sebarang dan dengan menggunakan Kriteria Cauchy diperoleh bahwa f ∈
R[a, b].

■

1.2.2 Kelas Fungsi Terintegral Riemann

Teorema Apit sering digunakan dalam kaitannya dengan kelas fungsi tangga. Dengan defin-
isinya diberikan sebagai berikut.

Definisi 1.2
Suatu fungsi s : [a, b] → R disebut sebagai fungsi tangga jika [a, b] merupakan gabun-
gan dari sejumlah hingga interval yang tidak saling tumpang tindih I1, I2, . . . , In se-
hingga s bernilai konstan pada setiap interval tersebut, yaitu:

s(x) = ck untuk semua x ∈ Ik, k = 1, 2, . . . , n.

Dengan demikian, fungsi tangga hanya memiliki sejumlah hingga nilai yang berbeda. Se-
bagai contoh, fungsi s : [−2, 2] → R yang didefinisikan sebagai:

s(x) =



0, −2 ≤ x < −1

1, −1 ≤ x ≤ 0

2, 0 < x < 1

3, 1 ≤ x ≤ 2

Sebelum membahas mengenai fungsi tangga yang kaitannya dengan integral Riemann.
Berikut diberikan definisi fungsi indikator dan kemudian diberikan lemma yang kaitannya den-
gan integral Riemann.

Definisi 1.3
Fungsi indikator dari suatu himpunan A, yang dilambangkan sebagai 1A, adalah fungsi
yang didefinisikan sebagai:

1A(x) =

1, jika x ∈ A,

0, jika x /∈ A.

☞ Catatan 1.1
Fungsi tangga pada Definisi 1.2 bisa dituliskan sebagai

s(x) =
n∑

k=1
ck1Ik

(x).
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Lema 1.1
Jika g : [a, c] → R didefinisikan oleh

g(x) :=

 α, x ∈ [a, b],

β. x ∈ (b, c],

dengan a < b < c, maka g ∈ R[a, c] dan

L :=
∫ c

a
g = α(b− a) + β(c− b).

Bukti. Pertama, misalkan Ṗ := {([xi−1, xi], x∗
i )}n

i=1 adalah partisi bertanda dari [a, c] dengan
norm< δ; akan ditunjukkan caramenentukan δ = δ(ε) yang bergantung pada ε agar |S(g; Ṗ)−
(α(b− a) + β(c− b))| < ε. Pada contoh ini perlu dilihat untuk beberapa kondisi:

Kondisi 1: Adam sehingga xm = b

Pada kondisi ini bisa langsung dihitung

S(f ; Ṗ) =
m∑

i=1
α(xi − xi−1) +

n∑
i=m+1

β(xi − xi−1)

= α(xm − x0) + β(xn − xm)

= α(b− a) + β(c− b).

Dengan demikian, diperoleh

|S(f ; Ṗ) − (α(b− a) + β(c− b))| = 0.

Kondisi 2: Adam sehingga xm < b < xm+1 dan x∗
m+1 ≤ b

Perhatikan bahwa

(α(b− a) + β(c− b))

= α(b− xm + xm − xm−1 + xm−1 − xm−2 + · · · + x1 − x0)

+β(xn − xn−1 + xn−1 − xn−2 + · · · + xm+2 − xm+1 + xm+1 − b)

= α(b− xm) + α(xm − xm−1 + xm−1 − xm−2 + · · · + x1 − x0)

+β(xn − xn−1 + xn−1 − xn−2 + · · · + xm+2 − xm+1) + 4(xm+1 − b)

= α(b− xm) + β(xm+1 − b) +
m∑

i=1
α(xi − xi−1) +

n∑
i=m+2

β(xi − xi−1).

Sehingga didapatkan

|S(f ; Ṗ) − (α(b− a) + β(c− b))|
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=

∣∣∣∣∣∣
m+1∑

i=1
α(xi − xi−1) +

n∑
i=m+2

β(xi − xi−1)

− (α(b− a) + β(c− b))

∣∣∣∣∣∣
=
∣∣∣∣∣
 m∑

i=1
α(xi − xi−1) + α(xm+1 − xm) +

n∑
i=m+2

β(xi − xi−1)


−

α(b− xm) + β(xm+1 − b) +
m∑

i=1
α(xi − xi−1) +

n∑
i=m+2

β(xi − xi−1)

 ∣∣∣∣∣
= |α(xm+1 − xm) − α(1 − xm) − β(xm+1 − 1)|

= |(α− β)(xm+1 − 1)| < |α− β|δ.

Kondisi 3: Adam sehingga xm < 1 < xm+1 dan x∗
m+1 > 1

|S(f ; Ṗ) − (α(b− a) + β(c− b))|

=

∣∣∣∣∣∣
 m∑

i=1
α(xi − xi−1) +

n∑
i=m+1

β(xi − xi−1)

− (α(b− a) + β(c− b))

∣∣∣∣∣∣
=
∣∣∣∣∣
 m∑

i=1
α(xi − xi−1) + β(xm+1 − xm) +

n∑
i=m+2

β(xi − xi−1)


−

α(b− xm) + β(xm+1 − b) +
m∑

i=1
α(xi − xi−1) +

n∑
i=m+2

β(xi − xi−1)

 ∣∣∣∣∣
= |β(xm+1 − xm) − α(1 − xm) − β(xm+1 − 1)|

= |(β − α)(1 − xm)| < |β − α|δ.

Dengan melihat hasil pada Kondisi 1, Kondisi 2 dan Kondisi 3 di atas diperoleh

|S(f ; Ṗ) − (α(b− a) + β(c− b))| < |β − α|δ.

Sekarang pilih δ ≤ ε/(|β − α|) didapatkan

|S(f ; Ṗ) − (α(b− a) + β(c− b))| < ε.

Dengan demikian, ditemukan bahwa |S(g; Ṗ) − (α(b − a) + β(c − b))| < ε ketika ∥Ṗ∥ < δ

dengan δ ≤ ε/(|β − α|). Karena ε > 0 sebarang, ini telah membuktikan bahwa g ∈ R[a, c],
dan bahwa

∫ c

a
g = α(b− a) + β(c− b), sebagaimana yang diinginkan. ■

Lema 1.2

Jika J = [c, d] adalah subinterval dari [a, b], maka 1J ∈ R[a, b] dan
∫ b

a
1J = d− c.
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Bukti. Untuk a = c atau b = d telah dibuktikan pada Lemma 1.1. Selain itu diamati untuk
kondisi a < c < d < b. Perhatikan bahwa 1J bisa ditulis sebagai

1J = 1[a,d] − 1[a,c).

Mengikuti Lemma1.1 danTeorema 1.2 didapatkan 1[a,d], 1[a,c) ∈ R[a, b]. Lebih lanjut, berdasarkan
Teorema 1.3 diperoleh 1J ∈ R[a, b] dan dikombinasikan dengan Lemma 1.1 dan Teorema 1.2

didapatkan
∫ b

a
1J = (d− a) − (c− a) = d− c. ■

☞ Catatan 1.2
Ada tiga subinterval lainnya J dengan titik akhir yang sama c dan d, yaitu, [c, d), (c, d], dan
(c, d). Karena, menurut Teorema 1.2, dapat diubah nilai fungsi pada sejumlah titik hingga
tanpa mengubah integralnya, maka hasil yang sama berlaku untuk tiga subinterval lainnya
ini.

Berikut diberikan lemma mengenai fungsi tangga yang kaitannya dengan integral Rie-
mann.

Teorema 1.7
Jika φ : [a, b] → R adalah fungsi tangga, maka φ ∈ R[a, b].

Bukti. Berdasarkan Definisi 1.2, suatu fungsi φ : [a, b] → R disebut sebagai fungsi tangga
apabila berbentuk

φ(x) = ck untuk semua x ∈ Ik, k = 1, 2, . . . , n.

dengan I1, I2, . . . , In adalah interval yang tidak saling tumpang tindih dengan titik ujungnya
adalah [αk, βk], k = 1, 2, · · · , n dan [a, b] = ∪n

k=1Ik. Lebih lanjut, berdasarkan Catatan 1.1,
fungsi tangga φ bisa dituliskan sebagai

φ(x) =
n∑

k=1
ck1Ik

(x).

Sehingga, berdaarkan Lema 1.2 dan Teorema 1.3 didapatkan bahwa φ ∈ R[a, b] dan∫ b

a
φ =

m∑
k=1

ck(βk − αk).

■

Kita mengilustrasikan penggunaan fungsi langkah dan Teorema Squeeze dalam dua con-
toh berikutnya. Yang pertama meninjau kembali sebuah fungsi yang awalnya memerlukan
perhitungan yang rumit.
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Contoh 1.6
(a) Fungsi g yang didefinisikan oleh g(x) = 2 untuk 0 ≤ x ≤ 1 dan g(x) = 3 untuk
1 < x ≤ 3. Bisa diamati bahwa g adalah fungsi langkah, sehingga integralnya dapat
dihitung sebagai ∫ 3

0
g = 2 · (1 − 0) + 3 · (3 − 1) = 2 + 6 = 8.

(b) Misalkan h(x) := x pada [0, 1] dan Pn := {0, 1/n, 2/n, . . . , (n − 1)/n, n/n = 1}.
Didefinisikan fungsi langkah αn dan ωn pada subinterval yang tidak saling tumpang
tindih [0, 1/n], [1/n, 2/n], . . . , [(n− 1)/n, 1] sebagai berikut:

αn(x) := h((k − 1)/n) = (k − 1)/n untuk x ∈ [(k − 1)/n, k/n), k = 1, 2, . . . , n− 1,

dan
αn(x) := h((n− 1)/n) = (n− 1)/n untuk x ∈ [(n− 1)/n, 1].

Artinya, αn memiliki nilai minimum dari h pada setiap subinterval. Secara serupa,
didefinisikan ωn sebagai nilai maksimum dari h pada setiap subinterval, yaitu:

ωn(x) := k/n untuk x ∈ [(k − 1)/n, k/n), k = 1, 2, . . . , n,

dan
ωn(x) := 1 untuk x ∈ [(n− 1)/n, 1].

Kemudian diperoleh ∫ 1

0
αn = 1

n
(0 + 1/n+ 2/n+ · · · + (n− 1)/n)

= 1
n2 (1 + 2 + · · · + (n− 1))

= 1
n2

(n− 1)n
2 = 1

2(1 − 1/n).

Dengan cara yang serupa, juga diperoleh∫ 1

0
ωn = 1

2(1 + 1/n).

Dengan demikian, didapatkan

αn(x) ≤ h(x) ≤ ωn(x) untuk x ∈ [0, 1]

dan ∫ 1

0
(ωn − αn) = 1

n
.

Karena untuk setiap ε > 0, dapat dilih n sehingga
1
n
< ε, maka dari Teorema Apit

didapatkan bahwa h dapat diintegralkan dengan nilai integral dari h berada di antara
nilai integral dari αn dan ωn untuk semua n dan karenanya memiliki nilai

1
2 .
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Teorema 1.8
Jika f : [a, b] → R kontinu pada [a, b], maka f ∈ R[a, b].

Bukti. Karena f kontinu pada interval tertutup terbatas [a, b], diperoleh f kontinu seragam
pada [a, b]. Jadi, untuk ε > 0, ada δ > 0 sehingga jika u, v ∈ [a, b] dan |u − v| < δ, maka
|f(u) − f(v)| < ε/(b− a).

Misalkan P = {xi}n
i=1 adalah partisi sehingga ∥P∥ < δ. Berdasarkan Teorema mengenai

eksistensi nilai maksimum dan minimum dari fungsi kontinu pada interval tertutup terbatas,
pilih ui ∈ Ii := [xi−1, xi] sebagai titik dengan f mencapai nilai minimum pada Ii, dan vi ∈ Ii

sebagai titik di mana f mencapai nilai maksimum pada Ii.
Selanjutnya, didefinisikan fungsi tangga α(x) dengan α(x) := f(ui) untuk x ∈ [xi−1, xi),

i = 1, . . . , n − 1, dan α(x) := f(un) untuk x ∈ [xn−1, xn]. Fungsi ω(x) didefinisikan serupa
menggunakan vi sebagai pengganti ui. Diperoleh,

α(x) ≤ f(x) ≤ ω(x), untuk semua x ∈ [a, b].

Juga, jelas bahwa

0 ≤
∫ b

a
(ω − α) =

n∑
i=1

(f(vi) − f(ui))(xi − xi−1) <
n∑

i=1

ε

b− a
(xi − xi−1) = ε.

Oleh karena itu, dari Teorema Apit, f ∈ R[a, b].
■

Fungsi monotone tidak harus kontinu pada setiap titik, ternyata juga dapat diintegralkan
secara Riemann. Hasil ini diberikan pada teorema di bawah ini.

Teorema 1.9
Jika f : [a, b] → Rmonoton pada [a, b], maka f ∈ R[a, b].

Bukti. Misalkan f fungsi naik pada I = [a, b]. Bagi interval menjadi n subinterval sama pan-
jang Ik = [xk−1, xk], diperoleh xk − xk−1 = (b − a)/n, k = 1, 2, . . . , n. Karena f naik pada Ik ,
nilai minimum dicapai di ujung kiri xk−1 dan nilai maksimum di ujung kanan xk.

Dengan demikian, fungsi tangga α(x) := f(xk−1) dan ω(x) := f(xk) untuk x ∈ [xk−1, xk],
k = 1, 2, . . . , n, memenuhi α(x) ≤ f(x) ≤ ω(x) untuk semua x ∈ I dan didapatkan∫ b

a
α = b− a

n
(f(x0) + f(x1) + · · · + f(xn−1)),

∫ b

a
ω = b− a

n
(f(x1) + f(x2) + · · · + f(xn)).

Mengurangkan bagian yang relevan, diperoleh∫ b

a
ω −

∫ b

a
α = b− a

n
(f(b) − f(a)).
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Jadi, untuk ε > 0, pilih n sehingga (b− a)(f(b) − f(a))/n < ε. Dengan Teorema Apit, f dapat
diintegralkan pada I.

■

1.2.3 Teorema Penjumlahan

Teorema 1.10 Teorema Penjumlahan

Misalkan f : [a, b] → R dan c ∈ (a, b). Fungsi f terintegral Riemann pada [a, b] jika
dan hanya jika pembatasan f pada [a, c] dan [c, b] keduanya dapat diintegralkan secara
Riemann. Dalam hal ini: ∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

Bukti. (⇐) Misalkan pembatasan f1 dari f pada [a, c], dan pembatasan f2 dari f pada [c, b],
dapat diintegralkan secara Riemann menjadi L1 dan L2 masing-masing. Maka, untuk ε > 0,
terdapat δ′ > 0 sehingga jika Ṗ1 adalah partisi bertanda dari [a, c] dengan ∥Ṗ1∥ < δ′, maka
|S(f1; Ṗ1)−L1| < ε/3. Demikian pula, terdapat δ′′ > 0 sehingga jika Ṗ2 adalah partisi bertanda
dari [c, b] dengan ∥Ṗ2∥ < δ′′, maka |S(f2; Ṗ1) − L2| < ε/3.

JikaM adalah batas dari |f |, maka definisikan δ = min(δ′, δ′′, ε/6M) dan pilih Ṗ sebagai
partisi bertanda dari [a, b] dengan ∥Ṗ∥ < δ. Akan dibuktikan bahwa:

|S(f ; Ṗ) − (L1 + L2)| < ε. (1.4)

(i) Jika c adalah titik partisi dari Ṗ , oleh karena itu partisi Ṗ terbagi menjadi dua partisi Ṗ1

dari [a, c] dan Ṗ2 dari [c, b]. Karena S(f ; Ṗ) = S(f1; Ṗ1) + S(f2; Ṗ1), serta ∥Ṗ1∥ < δ′ dan
∥Ṗ2∥ < δ′′, maka ketidaksamaan (1.4) diperoleh.

(ii) Jika c bukan titik partisi dalam Ṗ = {(Ik, tk)}m
k=1 dengan Ik = [xk−1, xk], maka ada k ≤ m

sehingga c ∈ (xk−1, xk). Didefinisikan Ṗ1 sebagai partisi bertanda dari [a, c] dengan:

Ṗ1 := {(I1, t1), . . . , (Ik−1, tk−1), ([xk−1, c], c)},

dan Ṗ2 sebagai partisi bertanda dari [c, b] dengan:

Ṗ2 := {([c, xk], c), (Ik+1, tk+1), . . . , (Im, tm)}.

Perhitungan secara langsung menunjukkan bahwa:

S(f ; Ṗ)−S(f ; Ṗ1)−S(f ; Ṗ2) = f(tk)(xk−xk−1)−f(c)(xk−xk−1) = (f(tk)−f(c))(xk−xk−1),

diperoleh:

|S(f ; Ṗ) − S(f ; Ṗ1) − S(f ; Ṗ2)| ≤ 2M(xk − xk−1) < 2Mδ < ε/3.
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Karena ∥Ṗ1∥ < δ′ dan ∥Ṗ2∥ < δ′′, maka:

|S(f ; Ṗ1) − L1| < ε/3 dan |S(f ; Ṗ2) − L2| < ε/3,

sehingga diperoleh (1.4).

Karena ε > 0 sebarang, maka f ∈ R[a, b] dan∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

terbukti.
(⇒) Misalkan f ∈ R[a, b], dan untuk ε > 0, ambil ηε > 0 pada Teorema Kriteria Cauchy

1.5. Misalkan f1 adalah pembatasan f pada [a, c] dan Ṗ1, Q̇1 adalah partisi bertanda dari
[a, c] dengan ∥Ṗ1∥ < ηε dan ∥Q̇1∥ < ηε. Dengan menambahkan titik partisi dan tanda dari
[c, b], partisi P1 dan Q1 dapat diperluas menjadi partisi bertanda P dan Q pada [a, b] yang
memenuhi ∥P∥ < ηε dan ∥Q∥ < ηε. Jika digunakan titik tambahan dan tanda yang sama di
[c, b] untuk P dan Q, maka:

S(f ;P) − S(f ;Q) = S(f1;P1) − S(f1;Q1).

Karena P dan Q memiliki norm ηε, maka |S(f ;P) − S(f ;Q)| < ε. Oleh karena itu, Kondisi
Cauchy menunjukkan bahwa pembatasan f1 dari f pada [a, c] adalah di R[a, c]. Dengan cara
yang sama, dapat dilihat bahwa pembatasan f2 dari f pada [c, b] adalah diR[c, b]. Persamaan∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

mengikuti dari bagian pertama pada pembuktian.
■

Akibat 1.1
Jika f ∈ R[a, b], dan jika [c, d] ⊆ [a, b], maka pembatasan f pada [c, d] adalah di R[c, d].

Bukti. Karena f ∈ R[a, b] dan c ∈ [a, b] dan dari Teorema Penjumlahan 1.10, diperoleh bahwa
pembatasan f pada [c, b] adalah di R[c, b]. Tetapi jika d ∈ (c, b), maka dengan menggunakan
Teorema Penjumlahan 1.10 menunjukkan bahwa pembatasan f pada [c, d] adalah di R[c, d].

■

Akibat 1.2
Jika f ∈ R[a, b] dan jika a = c0 < c1 < · · · < cm = b, maka pembatasan f pada setiap
subinterval [ci−1, ci] adalah terintegral Riemann dan∫ b

a
f =

m∑
i=1

∫ ci

ci−1
f.
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Sampai saat ini, telah dipertimbangkan integral Riemann pada interval [a, b] dengan a < b.
Sangat berguna untuk mendefinisikan integral secara lebih umum yang sifat tambahannya
didefinisikan di bawah ini.

Definisi 1.4
Jika f ∈ R[a, b] dan jika α, β ∈ [a, b] dengan α < β, maka didefinisikan:∫ α

β
f := −

∫ β

α
f dan

∫ α

α
f := 0.

Teorema 1.11
Jika f ∈ R[a, b] dan jika α, β, γ adalah sebarang bilangan dalam [a, b], maka:∫ α

γ
f =

∫ β

γ
f +

∫ α

β
f, (1.5)

keberadaan dua integral dari tiga integral ini menjamin keberadaan integral ketiga dan
kebenaran Persamaan (1.5).

Bukti. Jika dua dari bilangan α, β, γ sama, maka (1.5) berlaku. Dengan demikian, dapat dia-
sumsikan bahwa ketiga bilangan ini berbeda.

Demi simetri, kita memperkenalkan ekspresi:

L(α, β, γ) :=
∫ α

β
f +

∫ β

γ
f +

∫ γ

α
f.

Jelas bahwa (1.5) berlaku jika dan hanya jika L(α, β, γ) = 0. Oleh karena itu, untuk membuk-
tikan pernyataan tersebut, perlu ditunjukkan bahwa L = 0 untuk semua enam permutasi dari
argumen α, β, γ.

Perhatikan bahwa Teorema Penjumlahan 1.10 menyatakan bahwa L(α, β, γ) = 0 jika α <
γ < β. Namunmudah untuk melihat bahwa L(β, γ, α) dan L(γ, α, β) sama dengan L(α, β, γ).

Selain itu, bilangan:

L(β, α, γ), L(α, γ, β), dan L(γ, β, α)

semuanya sama dengan −L(α, β, γ). Oleh karena itu, L bernilai nol untuk semua konfigurasi
yang mungkin dari ketiga titik tersebut.

■

1.2.4 Latihan

1. Misalkan f : [a, b] → R. Tunjukkan bahwa f /∈ R[a, b] jika dan hanya jika terdapat ε0 > 0
sehingga untuk setiap n ∈ N, terdapat partisi bertanda Ṗn dan Q̇n dengan ∥Ṗn∥ < 1/n dan
∥Q̇n∥ < 1/n sehingga |S(f ; Ṗn) − S(f ; Q̇n)| ≥ ε0.
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2. Diberikan fungsi h yang didefinisikan sebagai h(x) := x + 1 untuk x ∈ [0, 1], bilangan
rasional, dan h(x) := 0 untuk x ∈ [0, 1], bilangan irasional. Tunjukkan bahwa h tidak dapat
diintegralkan secara Riemann.

3. Misalkan H(x) := k untuk x = 1/k(k ∈ N) dan H(x) := 0 untuk lainnya pada [0, 1]. Tun-
jukkan bahwaH tidak dapat diintegralkan secara Riemann.

4. Jika α(x) := −x dan ω(x) := x serta jika α(x) ≤ f(x) ≤ ω(x) untuk semua x ∈ [0, 1],
apakah itu mengikuti Teorema Apit 1.6 bahwa f ∈ R[0, 1]?

5. Misalkan f : [a, b] → R hanya memiliki sejumlah berhingga nilai berbeda. Apakah f meru-
pakan fungsi langkah?

6. Jika S(f ; Ṗ) adalah sembarang jumlah Riemann dari f : [a, b] → R, tunjukkan bahwa ter-

dapat fungsi tangga ψ : [a, b] → R sehingga
∫ b

a
ψ = S(f ; Ṗ).

7. Jika f dan g kontinu pada [a, b] dan jika
∫ b

a
f =

∫ b

a
g, buktikan bahwa terdapat c ∈ [a, b]

sehingga f(c) = g(c).

8. Jika f didefinisikan sebagai pembatasan ω(x) di mana c ∈ (a, b) bersifat sebarang, tun-
jukkan bahwa: ∫ c

a
f =

∫ b

a
f −

∫ b

c
f dan

∫ b

c
f =

∫ b

a
f −

∫ c

a
f.

Petunjuk: Misalkan α(x) := x− x; ω(x) := x; c ∈ (a, b); terapkan Teorema Penjepit.

9. Tunjukkan bahwa g(x) := sin(1/x) untuk x ∈ (0, 1] dan g(0) = 0 termasuk ke dalamR[0, 1].

10. Misalkan f : [a, b] → R, a = c0 < c1 < · · · < cm = b, dan pembatasan f pada [ci−1, ci]
termasuk ke dalam R[ci−1, ci] untuk i = 1, . . . ,m. Buktikan bahwa f ∈ R[a, b] dan bahwa
formula dalam Akibat 1.2 berlaku.

11. Jika f terbatas dan terdapat himpunan berhingga E sehingga f kontinu di setiap titik
[a, b]\E, maka tunjukkan bahwa f ∈ R[a, b].

12. Jika f kontinu pada [a, b], a < b, tunjukkan bahwa terdapat c ∈ [a, b] sehingga didapat∫ b

a
f = f(c)(b− a). Hasil ini kadang disebut Teorema Nilai Tengah untuk Integral.

13. Jika f dan g kontinu pada [a, b] dan g(x) > 0 untuk semua x ∈ [a, b], tunjukkan bahwa

terdapat c ∈ [a, b] sehingga
∫ b

a
fg = f(c)

∫ b

a
g. Tunjukkan bahwa kesimpulan ini gagal

jika g(x) > 0 tidak berlaku. (Perhatikan bahwa hasil ini adalah perpanjangan dari latihan
sebelumnya.)

14. Misalkan f kontinu pada [a, b], f(x) ≥ 0 untuk x ∈ [a, b], danMn :=
(∫ b

a
fn

)1/n

. Tunjukkan

bahwa lim
n→∞

Mn = sup{f(x) : x ∈ [a, b]}.

15. Misalkan a > 0 dan f ∈ R[−a, a].

a. Jika f genap (artinya, jika f(−x) = f(x) untuk semua x ∈ [0, a]), tunjukkan bahwa
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∫ a

−a
f = 2

∫ a

0
f .

b. Jika f ganjil (artinya, jika f(−x) = −f(x) untuk semua x ∈ [0, a]), tunjukkan bahwa∫ a

−a
f = 0.

16. Jika f kontinu pada [−a, a], tunjukkan bahwa
∫ a

−a
f(x)2dx = 2

∫ a

0
f(x)2dx.

1.3 Integral Darboux

Pendekatan alternatif untuk integral dikembangkan olehmatematikawanPrancis Gaston Dar-
boux (1842–1917). Darboux telah menerjemahkan karya Riemann tentang integrasi ke dalam
bahasa Prancis untuk diterbitkan di jurnal Prancis, dan terinspirasi oleh komentar Riemann,
ia mengembangkan metode integral dalam bentuk integral atas dan bawah yang diterbitkan
pada tahun 1875. Penjumlahan pendekatan ini diperoleh dari partisi dengan menggunakan
infimum dan supremum dari nilai fungsi pada subinterval, yang tidak harus dicapai sebagai
nilai fungsi dan karenanya jumlah tersebut tidak harus berupa jumlah Riemann.

Pendekatan ini secara teknis lebih sederhana karena menghindari kerumitan bekerja den-
gan pilihan tanda yang tak terhingga banyaknya. Namun, bekerja dengan infimum dan supre-
mum juga memiliki kerumitan, seperti tidak adanya sifat penjumlahan pada kuantitas terse-
but. Selain itu, ketergantungan pada sifat urutan bilangan real menyebabkan kesulitan dalam
memperluas integral Darboux ke dimensi yang lebih tinggi, dan lebih penting lagi, mengham-
bat generalisasi ke permukaan yang lebih abstrak seperti manifold.

Pada bagian ini, kita memperkenalkan integral atas dan bawah dari fungsi terbatas pada
interval, danmendefinisikan fungsi terintegralmenurut Darboux jika kedua kuantitas ini sama.
Selanjutnya, dengan melihat contoh dan menetapkan kriteria keterintegralan seperti Cauchy
untuk integral Darboux. Bagian ini diakhiri denganmembuktikan bahwa pendekatan Riemann
dan Darboux terhadap integral sebenarnya sama, yaitu, suatu fungsi pada interval tertutup
dan terbatas dapat diintegralkan menurut Riemann jika dan hanya jika dapat diintegralkan
menurut Darboux.

1.3.1 Jumlah Atas dan Bawah

Misalkan f : I → R adalah fungsi terbatas pada I = [a, b] dan P = {x0, x1, . . . , xn) adalah
partisi dari I. Untuk k = 1, 2, . . . , n, didefinisikan

mk := inf{f(x) : x ∈ [xk−1, xk]}, Mk := sup{f(x) : x ∈ [xk−1, xk]}.

Jumlah bawah f sesuai partisi P didefinisikan sebagai

L(f ;P) :=
n∑

k=1
mk(xk − xk−1),
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dan jumlah atas f sesuai partisi P didefinisikan sebagai

U(f ;P) :=
n∑

k=1
Mk(xk − xk−1).

Jika f adalah fungsi positif, maka jumlah bawah L(f ;P) dapat ditafsirkan sebagai luas dari
gabungan persegi panjang dengan alas [xk−1, xk] dan tinggimk. Demikian pula, jumlah atas
U(f ;P) dapat ditafsirkan sebagai luas dari gabungan persegi panjang dengan alas [xk−1, xk]
dan tinggiMk. Interpretasi geometris ini menyarankan bahwa, untuk partisi tertentu, jumlah
bawah kurang dari atau sama dengan jumlah atas. Kita sekarang akan membuktikan hal ini.

Lema 1.3
Jika f : I → R terbatas dan P adalah partisi sebarang dari I , maka

L(f ;P) ≤ U(f ;P).

Bukti. MisalkanP := (x0, x1, . . . , xn). Karenamk ≤ Mk untuk k = 1, 2, . . . , n dan xk −xk−1 >

0 untuk k = 1, 2, . . . , n, maka diperoleh

L(f ;P) =
n∑

k=1
mk(xk − xk−1) ≤

n∑
k=1

Mk(xk − xk−1) = U(f ;P).

■

Jika P := (x0, x1, . . . , xn) dan Q := (y0, y1, . . . , ym) adalah partisi-partisi dari I , dikatakan
bahwaQ adalah perbaikan dariP jika setiap titik partisi xk ∈ P juga termasuk dalamQ (yaitu,
jika P ⊆ Q). Partisi perbaikanQ dari partisi P dapat diperoleh dengan menambahkan sejum-
lah titik hingga ke P . Dalam hal ini, setiap subinterval [xk−1, xk] di P dapat ditulis sebagai
gabungan interval-interval di Q, yaitu

[xk−1, xk] = [yj−1, yj ] ∪ [yj , yj+1] ∪ · · · ∪ [yh−1, yh].

Berikut diberikan lema yangmembahas pengaruh partisi perbaikan terhadap jumlah atas dan
jumlah bawah.

Lema 1.4
Jika f : I → R terbatas, P adalah partisi dari I dan Q adalah partisi perbaikan dari P ,
maka

L(f ;P) ≤ L(f ;Q) dan U(f ;Q) ≤ U(f ;P).

Bukti. Misalkan P := (x0, x1, . . . , xn). Pertama diperiksa efek dari menambahkan satu titik
ke P . Misalkan z ∈ I sedemikian sehingga xk−1 < z < xk dan misalkan P ′ adalah partisi

P ′ := (x0, x1, . . . , xk−1, z, xk, . . . , xn),
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yang diperoleh dari P dengan menambahkan z ke P . Misalkan m′
k danM ′

k adalah bilangan-
bilangan

m′
k := inf{f(x) : x ∈ [xk−1, z]}, M ′

k := sup{f(x) : x ∈ [xk−1, z]},

m′′
k := inf{f(x) : x ∈ [z, xk]}, M ′′

k := sup{f(x) : x ∈ [z, xk]},

dan berlaku
mk ≤ m′

k, mk ≤ m′′
k, M ′

k ≤ Mk, M ′′
k ≤ Mk.

Oleh karena itu,

mk(xk − xk−1) = mk(z − xk−1) +mk(xk − z) ≤ m′
k(z − xk−1) +m′′

k(xk − z),

yang berarti
mk(xk − xk−1) ≤ m′

k(z − xk−1) +m′′
k(xk − z).

Dengan argumen serupa untukMk , diperoleh

M ′
k(z − xk−1) +M ′′

k (xk − z) ≤ Mk(xk − xk−1).

Dengan ini, dapat disimpulkan bahwa L(f ;P) ≤ L(f ;Q) dan U(f ;Q) ≤ U(f ;P). Argumen ini
dapat diperluas ke semua interval yang terbagi dengan menambahkan titik, sehingga partisi
perbaikan selalu meningkatkan jumlah bawah dan menurunkan jumlah atas.

■

Lema 1.5
Misalkan f : I → R dibatasi. Jika P1,P2 adalah dua partisi dari I , maka

L(f ;P1) ≤ U(f ;P2).

Bukti. Misalkan Q := P1 ∪ P2 menjadi partisi yang diperoleh dengan menggabungkan titik-
titik dariP1 danP2. MakaQ adalah penyempurnaandariP1 danP2. Oleh karena itu, berdasarkan
Lema 1.3 dan 1.4, kita simpulkan bahwa

L(f ;P1) ≤ L(f ;Q) ≤ U(f ;Q) ≤ U(f ;P2).

■

1.3.2 Integral Bawah dan Atas

Dalamsubbab ini himpunan semuapartisi dari interval I dinyatakanolehP(I). Jika f : I → R

adalah fungsi terbatas, maka setiap P ∈ P(I) dapat ditentukan dua bilangan: L(f ;P) dan
U(f ;P). Oleh karena itu, koleksi P(I) menentukan dua himpunan bilangan: 1) himpunan
jumlah bawah L(f ;P) dan himpunan jumlah atas U(f ;P) untuk P ∈ P(I).
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Definisi 1.5
Misalkan I = [a, b] dan f : I → R adalah fungsi terbatas. Integral bawah dari f pada I
adalah bilangan

L(f) := sup{L(f ;P) : P ∈ P(I)},

dan integral atas dari f pada I adalah bilangan

U(f) := inf{U(f ;P) : P ∈ P(I)}.

Karena f adalah fungsi terbatas, nilai-nilai di bawah ini eksis:

mI := inf{f(x) : x ∈ I} dan MI := sup{f(x) : x ∈ I}.

Dapat segera terlihat bahwa untuk setiap P ∈ P(I), berlaku

mI(b− a) ≤ L(f ;P) ≤ U(f ;P) ≤ MI(b− a).

Dapat disimpulkan bahwa

mI(b− a) ≤ L(f) dan U(f) ≤ MI(b− a).

Teorema 1.12
Misalkan I = [a, b] dan f : I → R adalah fungsi terbatas. Maka integral bawah L(f) dan
integral atas U(f) dari f pada I ada. Lebih lanjut,

L(f) ≤ U(f).

Bukti. JikaP1 danP2 adalah partisi-partisi dari I , maka dari Lemma 1.3 diperoleh L(f ;P1) ≤
U(f ;P2). Oleh karena itu bilanganU(f ;P2) adalah batas atas untuk himpunan {L(f ;P) : P ∈
P(I)}. Akibatnya, L(f), sebagai supremum dari himpunan ini, memenuhi

L(f) ≤ U(f ;P2).

Karena P2 adalah partisi sembarang dari I , maka L(f) adalah batas bawah untuk himpunan
{U(f ;P) : P ∈ P(I)}. Akibatnya, didapatkan

L(f) ≤ U(f).

■

1.3.3 Integral Darboux

Jika I adalah interval tertutup terbatas dan f : I → R adalah fungsi terbatas, telah dibuktikan
pada Teorema 1.12 bahwa integral bawah L(f) dan integral atas U(f) selalu ada. Selain itu,
selalu berlaku L(f) ≤ U(f). Namun, mungkin saja terjadi L(f) < U(f), seperti yang akan
dilihat kemudian. Di sisi lain, terdapat banyak fungsi dengan L(f) = U(f).
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Definisi 1.6
Misalkan I = [a, b] dan f : I → R adalah fungsi terbatas. Fungsi f disebut terintegral
Darboux pada I jika L(f) = U(f). Dalam kasus ini, integral Darboux dari f pada I
didefinisikan sebagai nilai L(f) = U(f).

Dengan demikian, kita melihat bahwa jika integral Darboux dari suatu fungsi pada interval
ada, maka integral tersebut adalah bilangan riil unik yang berada di antara jumlah bawah dan
jumlah atas.

Karena akan segera dibuktikan kesetaraan antara integral Darboux dan Riemann, akan

digunakan notasi standar
∫ b

a
f atau

∫ b

a
f(x) dx untuk integral Darboux dari fungsi f pada

[a, b]. Konteksnya seharusnya mencegah kebingungan.

Contoh 1.7
(a) Fungsi konstan adalah fungsi yang terintegralkan Darboux. Misalkan f(x) := c un-

tuk x ∈ I := [a, b]. Jika P adalah partisi sembarang dari I , maka mudah dilihat
bahwa L(f ;P) = c(b − a) = U(f ;P) (Lihat Latihan 7.4.2). Oleh karena itu, inte-
gral bawah dan integral atas diberikan oleh L(f) = c(b − a) = U(f). Akibatnya, f

terintegral Darboux pada I dan
∫ b

a
f = c(b− a).

(b) Misalkan g didefinisikan pada [0, 3] sebagai berikut: g(x) := 2 jika 0 ≤ x ≤ 1 dan
g(x) := 3 jika 2 ≤ x ≤ 3. Untuk ε > 0, didefinisikan partisi Pε := {0, 1, 1 + ε, 3},
maka diperoleh jumlah atas

U(g;Pε) = 2 · (1 − 0) + 3 · (1 + ε− 1) + 3 · (3 − 1 − ε) = 2 + 3ε+ 6 − 3ε = 8.

Oleh karena itu, integral atas memenuhi U(g) ≤ 8. Demikian pula, diperoleh jumlah
bawah

L(g;Pε) = 2 · (1 − 0) + 2 · (1 + ε− 1) + 3 · (3 − 1 − ε) = 2 + 2ε+ 6 − 3ε = 8 − ε,

sehingga integral bawah memenuhi L(g) ≥ 8. Sedangkan Teorema 1.12 mem-
berikan L(g) ≤ U(g) dan oleh karena itu L(g) = U(g) = 8. Jadi integral Darboux
dari g adalah 8.

(c) Fungsi h(x) := x dapat diintegralkan pada [0, 1]. Misalkan Pn adalah partisi dari
I := [0, 1] menjadi n subinterval yang diberikan oleh

Pn :=
(

0, 1
n
,

2
n
, . . . ,

n− 1
n

,
n

n
= 1

)
.

Karena h adalah fungsi yang meningkat, infimum dan supremum pada subinterval
((k − 1)/n, k/n) dicapai di titik ujung kiri dan kanan, berturut-turut, dan diberikan
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oleh mk = (k − 1)/n dan Mk = k/n. Selain itu, karena xk − xk−1 = 1/n untuk
semua k = 1, 2, . . . , n, diperoleh

L(h;Pn) = (0 + 1 + · · · + (n− 1))/n2, U(h;Pn) = (1 + 2 + · · · + n)/n2.

Jika digunakan rumus 1 + 2 + · · · +m = m(m+ 1)/2, untukm ∈ N, didapatkan

L(h;Pn) = (n− 1)n
2n2 = 1

2

(
1 − 1

n

)
, U(h;Pn) = n(n+ 1)

2n2 = 1
2

(
1 + 1

n

)
.

Karena himpunan partisi {Pn : n ∈ N} adalah bagian dari semua partisi P(I) dari
I , diperoleh

1
2 = sup{L(h;Pn) : n ∈ N} ≤ sup{L(h;P) : P ∈ P(I)} = L(h),

dan juga bahwa

U(h) = inf{U(h;P) : P ∈ P(I)} ≤ inf{U(h;Pn) : n ∈ N} = 1
2 .

Karena
1
2 ≤ L(h) ≤ U(h) ≤ 1

2 , bisa disimpulkan bahwa L(h) = U(h) = 1
2 . Oleh

karena itu, h terintegral Darboux pada [0, 1] dan∫ 1

0
h =

∫ 1

0
x dx = 1

2 .

(d) Fungsi yang tidak dapat diintegralkan. Misalkan I := [0, 1] dan f : I → R adalah
fungsi Dirichlet yang didefinisikan oleh

f(x) =

1, untuk x rasional,

0, untuk x irasional.

Jika P := (x0, x1, . . . , xn) adalah partisi sembarang dari [0, 1], maka karena setiap
interval nontrivial mengandung bilangan rasional dan irasional, sehingga diperoleh
mk = 0 dan Mk = 1. Oleh karena itu, didapat L(f ;P) = 0, U(f ;P) = 1, untuk
semua P ∈ P(I), sehingga L(f) = 0 dan U(f) = 1. Karena L(f) ̸= U(f), fungsi f
tidak terintegral Darboux pada [0, 1].

Teorema 1.13
Misalkan I := [a, b] dan f : I → R adalah fungsi terbatas pada I . Fungsi f dapat
diintegralkan Darboux pada I jika dan hanya jika untuk setiap ε > 0, terdapat partisi
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Pε dari I sehingga
U(f ;Pε) − L(f ;Pε) < ε. (1.6)

Bukti. Jika f terintegral Darboux, maka L(f) = U(f). Jika ε > 0 diberikan, dari definisi
integral bawah sebagai supremum, terdapat partisi P1 dari I sehingga L(f)−ε/2 < L(f ;P1).
Dengan cara serupa, terdapat partisi P2 dari I sehingga U(f ;P2) < U(f) + ε/2.

Misalkan Pε := P1 ∪ P2, maka Pε adalah perbaikan dari P1 dan P2. Akibatnya, menurut
Lema 1.3 dan 1.4, didapat

L(f) − ε/2 < L(f ;P1) ≤ L(f ;Pε) ≤ U(f ;Pε) ≤ U(f ;P2) < U(f) + ε/2,

dan oleh karena itu

U(f ;Pε) − L(f ;Pε) < (U(f) + ε/2) − (L(f) − ε/2) = (U(f) − L(f)) + ε.

Karena L(f) = U(f), dapat disimpulkan bahwa persamaan (1.6) terpenuhi.
Untuk membuktikan sebaliknya, misalkan berlaku bahwa untuk sebarang ε > 0, terdapat

partisi Pε dari I sehingga (1.6) terpenuhi. Kemudian berdasarkan definisi integral atas dan
bawah diperoleh

L(f ;Pε) ≤ sup{L(f ;P) : P ∈ P(I)} = L(f)

dan
U(f) = inf{L(f ;P) : P ∈ P(I)} ≤ U(f ;Pε).

Bberdasarkan asumsi, (1.6) berlaku untuk sebarang ε > 0, sehingga

U(f) − L(f) ≤ U(f ;Pε) − L(f ;Pε) < ε.

Karena ε > 0 bersifat sebarang, bisa disimpulkan U(f) ≤ L(f). Karena ketaksamaan L(f) ≤
U(f) selalu benar, diperoleh L(f) = U(f) dan oleh karena itu f dapat diintegralkan Darboux.

■

Akibat 1.3
Misalkan I = [a, b] dan f : I → R adalah fungsi terbatas. Jika {Pn : n ∈ N} adalah
barisan partisi dari I sehingga

lim
n→∞

(U(f ;Pn) − L(f ;Pn)) = 0, (1.7)

maka f terintegral Darboux dan

lim
n→∞

L(f ;Pn) =
∫ b

a
f = lim

n→∞
U(f ;Pn). (1.8)
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Bukti. Misalkan (1.7) terpenuhi. Berdasarkan definisi limit barisan, diperoleh bahwa untuk
sebarang ε > 0 terdapat K sehingga jika n ≥ K maka U(f ;Pn) − L(f ;Pn) < ε. Oleh karena
itu, f memenuhi kriteria pada Teorema 1.13, sehingga f terintegral Darboux yaitu U(f) =

L(f) =
∫ b

a
f . Selain itu, juga bisa diperoleh

0 ≤ U(f ;Pn) − U(f) = U(f ;Pn) − L(f) ≤ U(f ;Pn) − L(f ;Pn) < ε

untuk setiap n ≥ K. Dengan demikian

lim
n→∞

U(f ;Pn) = U(f) =
∫ b

a
f.

Untuk melengkapi (1.8), gunakan (1.7) dan diperoleh

lim
n→∞

U(f ;Pn) = lim
n→∞

(U(f ;Pn) − L(f ;Pn)) + lim
n→∞

L(f ;Pn) = lim
n→∞

L(f ;Pn).

■

Makna Akibat ini adalah bahwa meskipun definisi integral Darboux melibatkan semua
partisi interval yang mungkin, untuk fungsi tertentu, keberadaan integral dan nilainya sering
kali dapat ditentukan dengan barisan partisi tertentu.

Sebagai contoh, jikah(x) := x pada [0, 1] danPn adalah partisi seperti padaContoh 1.7-(c),
maka

lim
n→∞

(U(h;Pn) − L(h;Pn)) = lim
n→∞

1/n = 0

dan oleh karena itu ∫ 1

0
x dx = lim

n→∞
L(h;Pn) = lim

n→∞
1
2(1 + 1/n) = 1

2 .

1.3.4 Fungsi Kontinu dan Monoton

Telah ditunjukkan pada subbab 1.2 bahwa fungsi yang kontinu ataumonoton pada selang ter-
tutup dan terbatas adalah terintegralkan Riemann. Pembuktian menggunakan pendekatan
dengan fungsi tangga dan Teorema Apit 1.6. Kedua pembuktian ini memanfaatkan secara
esensial fakta bahwa fungsi kontinu maupun fungsi monoton mencapai nilai maksimum dan
minimum pada selang tertutup dan terbatas. Artinya, jika f adalah fungsi kontinu ataumono-
ton pada [a, b], maka untuk partisi P = (x0, x1, . . . , xn), nilai

Mk = sup{f(x) : x ∈ Ik}, mk = inf{f(x) : x ∈ Ik}

untuk k = 1, 2, . . . , n dicapai sebagai nilai fungsi pada titik tertentu. Untuk fungsi kontinu, ini
dibahas pada bab fungsi kontinu mengenai nilai maksimum dan minimum, dan untuk fungsi
monoton, nilai ini dicapai di titik ujung kanan dan kiri selang.
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Jika kita mendefinisikan fungsi tangga ω pada [a, b] dengan

ω(x) := Mk untuk x ∈ [xk−1, xk), k = 1, 2, . . . , n− 1

dan
ω(x) := Mn untuk x ∈ [xn−1, xn],

maka kita perhatikan bahwa integral Riemann dari ω diberikan oleh∫ b

a
ω =

n∑
k=1

Mk(xk − xk−1).

Sekarang pada subbab ini jumlah tersebut dikenal sebagai jumlah atas Darboux U(f ;P), se-
hingga diperoleh ∫ b

a
ω = U(f ;P).

Demikian pula, jika fungsi langkah α didefinisikan oleh

α(x) := mk untuk x ∈ [xk−1, xk), k = 1, 2, . . . , n− 1

dan
α(x) := mn untuk x ∈ [xn−1, xn],

maka didapat integral Riemann∫ b

a
α =

n∑
k=1

mk(xk − xk−1) = L(f ;P).

Kurangkan kedua integral di atas, sehingga didapat∫ b

a
(ω − α) =

n∑
k=1

(Mk −mk)(xk − xk−1) = U(f ;P) − L(f ;P).

Bisa dilihat bahwa Kriteria Keterintegralan Darboux 1.13 adalah padanan dari Teorema Apit
1.6 untuk integral Riemann.

Oleh karena itu, jika pada pembuktian dari Teorema 1.8 dan 1.9 dilakukan penggantian
integral fungsi tangga dengan jumlah bawah dan atas yang sesuai, maka diperoleh pembuk-
tian dari fungsi kontinu dan fungsi monoton yang terintegral Darboux. Sebagai contoh, pada
Teorema 1.8 untuk fungsi kontinu, didapat

α∗(x) = f(ui) = mi, ω∗(x) = f(vi) = Mi,

dan dengan mengganti integral dari ω∗ − α∗ dengan U(f ;P) − L(f ;P).)
Dengan demikian, diperoleh teorema berikut.
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Teorema 1.14
Jika fungsi f pada selang I = [a, b] adalah kontinu atau monoton pada I , maka f terin-
tegral Darboux pada I .

Pengamatan sebelumnya yangmenghubungkan integral RiemanndanDarbouxmemainkan
peran dalam pembuktian bahwa integral Riemann dan Darboux ekuivalen, yang mana akan
dibahas pada bagian selanjutnya. Tentu saja, setelah hal tersebut dibuktikan, maka teorema
sebelumnya akan menjadi konsekuensi langsung.

1.3.5 Hubungan antara Integral Riemann dan Integral Darboux

Subbab ini diakhiri dengan sebuah pembuktian bahwa definisi integral menurut Riemann dan
Darboux adalah ekuivalen dalam arti bahwa suatu fungsi pada interval tertutup dan terbatas
adalah terintegralk Riemann jika dan hanya jika fungsi tersebut terintegral Darboux, serta
nilai integralnya sama. Hal ini tidak langsung terlihat jelas. Integral Riemann didefinisikan
dalam bentuk jumlah nilai fungsi (dengan titik sampel) bersama dengan suatu proses limit
berdasarkan panjang subinterval dalam suatu partisi. Di sisi lain, integral Darboux didefin-
isikan dalam bentuk jumlah yang menggunakan infimum dan supremum dari nilai fungsi,
yang tidak harus berupa nilai fungsi itu sendiri, serta suatu proses limit berdasarkan par-
tisi perbaikan, bukan berdasarkan ukuran subinterval dalam suatu partisi. Namun, keduanya
ternyata ekuivalen.

Latar belakang yang diperlukan untuk membuktikan kesetaraan ini sudah tersedia. Seba-
gai contoh, suatu fungsi terintegral Darboux, selain dapat dikenali dengan jumlah Darboux
atas dan bawah juga bisa dikenali dengan integral Riemann dari fungsi tangga. Dengan
demikian, Kriteria Keterintegralan 1.13 untuk integral Darboux berkorespondensi dengan Teo-
rema Apit 1.6 pada integral Riemann. Sebaliknya, jika suatu fungsi terintegral Riemann, defin-
isi supremum dan infimum memungkinkan dipilih titik sampel sehingga jumlah Riemann da-
pat dibuat sedekat mungkin dengan jumlah Darboux atas dan bawah sesuai yang diinginkan.
Dengan cara ini, bisa dihubungkan integral Riemann dengan integral Darboux atas dan bawah.
Rincian lebih lanjut diberikan dalam pembuktian.

Teorema 1.15
Sebuah fungsi f pada I = [a, b] adalah terintegral Darboux jika dan hanya jika fungsi
tersebut terintegral Riemann.

Bukti. Misalkan f terintegral Darboux. Untuk sebarang ε > 0, ambil partisi Pε = {Ik,ε}n
k=1

dari [a, b] sehingga
U(f ;Pε) − L(f ;Pε) < ε.
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Untuk partisi ini, didefinisikan fungsi tangga αε dan ωε dengan

ωε(x) = Mk,ε, αε(x) = mk,ε, untuk x ∈ Ik,ε.

denganMk adalah supremum danmk adalah infimum dari f pada Ik,ε. Jelas bahwa

αε(x) ≤ f(x) ≤ ωε(x), ∀x ∈ [a, b]. (1.9)

Dari Teorema 1.7, didapatkan bahwaω danα terintegral Riemanndannilai integralnya diberikan
oleh ∫ b

a
ωε =

n∑
k=1

Mk(xk − xk−1) = U(f ;Pε) dan
∫ b

a
αε =

n∑
k=1

mk(xk − xk−1) = L(f ;Pε).

Oleh karena itu, didapat ∫ b

a
(ωε − αε) = U(f ;Pε) − L(f ;Pε) < ε.

Dengan menggunakan Teorema Apit 1.6, maka f adalah fungsi Riemann terintegrasi. Selain
itu, amati bahwa (1.9) dan (1.3.5) berlaku untuk setiap partisi P dan oleh karena itu integral
Riemann dari f terletak di antara L(f ;P) dan U(f ;P) untuk setiap partisi P . Oleh karena itu,
integral Riemann dari f sama dengan integral Darboux dari f .

Sekarang, anggap bahwa f adalah fungsi terintegral Riemann dan misalkan A =
∫ b

a
f

menyatakan nilai dari integralnya. Sehingga, berdasarkan Teorema 1.4, f terbatas dan untuk
setiap ε > 0 ada δ > 0 sehingga untuk setiap partisi bertanda Ṗ dengan ∥Ṗ∥ < δ, didapat
|S(f ; Ṗ −A| < ε, yang dapat ditulis sebagai

A− ε < S(f ; Ṗ) < A+ ε. (1.10)

KarenaMk = sup{f(x) : x ∈ [xk−1, xk]} adalah nilai supremum pada [xk−1, xk], dapat dipilih
partisi bertanda Ṗ = {([xk−1, xk], tk)} dengan tanda tk dalam [xk−1, xk] sehingga f(tk) >
Mk − ε/(b− a). Akibatnya diperoleh

S(f ; Ṗ) =
n∑

k=1
f(tk)(xk − xk−1) ≥

n∑
k=1

Mk(xk − xk−1) − ε = U(f ;P) − ε ≥ U(f) − ε. (1.11)

Menggabungkan pertidaksamaan (1.10) dan (1.11), didapatkan

A+ ε > S(f ; Ṗ) ≥ U(f) − ε.

Oleh karena itu diperoleh U(f) < A + 2ε. Karena ε > 0 sebarang, ini menyiratkan bahwa
U(f) ≤ A.

Dengan cara yang sama, jumlah bawah juga dapat didekati dengan jumlah Riemann dan
menunjukkan bahwa L(f) ≥ A − 2ε untuk sebarang ε > 0, yang menyiratkan L(f) ≥ A.
Dengan demikian, didapatkan pertidaksamaan A ≤ L(f) ≤ U(f) ≤ A, yang artinya L(f) =

U(f) = A =
∫ b

a
f . Oleh karena itu, fungsi f adalah terintegral Darboux dengan nilai integral-

nya sama dengan integral Riemann.
■
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1.3.6 Latihan

1. Misalkan f(x) := |x| untuk −1 ≤ x ≤ 2. Hitung L(f ;P) dan U(f ;P) untuk partisi berikut:

a. P1 := (−1, 0, 1, 2),

b. P2 := (−1,−1/2, 0, 1/2, 1, 3/2, 2).

2. Buktikan bahwa jika f(x) := c untuk x ∈ [a, b], maka integral Darboux-nya sama dengan
c(b− a).

3. Misalkan f dan g adalah fungsi terbatas pada I = [a, b]. Jika f(x) ≤ g(x) untuk semua
x ∈ I , tunjukkan bahwa L(f) ≤ L(g) dan U(f) ≤ U(g).

4. Misalkan f terbatas pada [a, b] dan k > 0. Tunjukkan bahwa L(kf) = kL(f) dan U(kf) =
kU(f).

5. Misalkan f, g, h adalah fungsi terbatas pada I = [a, b] sehingga f(x) ≤ g(x) ≤ h(x) untuk

semua x ∈ I. Tunjukkan bahwa jika f dan h terintegral Darboux serta
∫ b

a
f =

∫ b

a
h, maka

g juga terintegral Darboux dengan
∫ b

a
g =

∫ b

a
f .

6. Misalkan f didefinisikan pada [0, 2] dengan f(x) := 1 jika x ̸= 1 dan f(1) := 0. Tunjukkan
bahwa integral Darboux dari f ada dan tentukan nilainya.

7. a. Buktikan bahwa jika g(x) := 0 untuk 0 ≤ x ≤ 1
2 dan g(x) := 1 untuk

1
2 < x ≤ 1, maka

integral Darboux dari g pada [0, 1] adalah 1
2 .

b. Apakah kesimpulan tetap berlaku jika nilai g di titik
1
2 diubah menjadi 13?

8. Misalkan f kontinu pada I = [a, b] dan f(x) ≥ 0 untuk semua x ∈ I. Buktikan bahwa jika
L(f) = 0, maka f(x) = 0 untuk semua x ∈ I.

9. Misalkan f1 dan f2 adalah fungsi terbatas pada [a, b]. Tunjukkan bahwa L(f1) + L(f2) ≤
L(f1 + f2).

10. Jika f adalah fungsi terbatas pada [a, b] sehingga f(x) = 0 kecuali untukx di {c1, c2, . . . , cn}
dalam [a, b], tunjukkan bahwa L(f) = U(f) = 0.

11. Misalkan f(x) = x2 untuk 0 ≤ x ≤ 1. Untuk partisi Pn := (0, 1/n, 2/n, . . . , (n − 1)/n, 1),
hitung L(f,Pn) dan U(f,Pn), serta tunjukkan bahwa L(f) = U(f) = 1

3 . (Gunakan rumus

12 + 22 + · · · + n2 = n(n+ 1)(2n+ 1)
6 .)

12. Misalkan P adalah partisi yang keberadaannya dijamin oleh Teorema Kriteria Keterinte-
gralan Darboux 1.13. Tunjukkan bahwa jika P adalah partisi sembarang, maka U(f ;P) −
L(f ;P) < ε.

13. Tuliskan pembuktian bahwa suatu fungsi f pada [a, b] terintegral Darboux jika fungsinya:

a. kontinu, atau

Kistosil Fahim, Departemen Matematika 37 Institute Teknologi Sepuluh Nopember



1.3. INTEGRAL DARBOUX 1. INTEGRAL RIEMANN

b. monoton.

14. Misalkan f didefinisikan pada I := [a, b] dan anggap bahwa f memenuhi kondisi Lipschitz
|f(x)−f(y)| ≤ K|x−y| untuk semuax, y dalam I. JikaPn adalah partisi I denganmembagi
I menjadi n bagian yang sama, tunjukkan bahwa U(f ;Pn) − L(f ;Pn) ≤ K(b− a)2/n.

Institute Teknologi Sepuluh Nopember 38 Kistosil Fahim, Departemen Matematika



Bab 2 Barisan Fungsi

Dalam bab-bab sebelumnya, telah banyak digunakan barisan bilangan real. Dalam bab ini,
akan dipertimbangkan barisan yang suku-sukunya berupa fungsi dari bilangan real. Barisan
fungsi ini muncul secara alami dalam analisis real dan sering digunakan untuk mendekati su-
atu fungsi tertentu sertamendefinisikan fungsi baru berdasarkan fungsi yang telah diketahui.

Pada subbab 2.1, akan diperkenalkan dua jenis kekonvergenan untuk barisan fungsi, yaitu
konvergensi titik demi titik (pointwise convergence) dan konvergensi seragam (uniform con-
vergence). Konvergensi seragam dianggap lebih penting dan akan menjadi fokus utama. Hal
ini karena, seperti dijelaskan dalamsubbab 2.2, sifat-sifat tertentu tetap dipertahankan dalam
konvergensi seragam. Dengan kata lain, jika setiap suku dalam suatu barisan fungsi yang
konvergen seragam memiliki sifat-sifat tersebut, maka fungsi limitnya juga memilikinya.

2.1 Konvergensi titik demi titik dan Konvergensi seragam

Misal A ⊆ R dan ditentukan bahwa untuk masing-masing n ∈ N ada fungsi fn : A → R. Di
sini (fn) dikatakan sebagai barisan fungsi dari A ke R. Jelas, masing-masing x ∈ A, barisan
tersebut menghasilkan barisan bilangan real, yaitu

(fn(x)). (2.1)

Untuk x ∈ A tertentu, barisan tersebut mungkin konvergen, dan untuk x ∈ A yang lain barisan
tersebut divergen. Pada umumnya, nilai dari limit, jika ada, akan bergantung pada pemilihan
titik x ∈ A.

Definisi 2.1
Misal (fn) barisan fungsi dari A ⊆ R ke R, dan misal f fungsi dari A0 ⊆ R ke R.
Dikatakan barisan (fn) konvergen pada A0 ke f , jika untuk masing-masing x ∈ A0

barisan (fn(x)) konvergen ke f(x) di R. Dalam kasus ini f disebut limit pada A0 dari
barisan (fn). Saat fungsi f ada, (fn) dikatakan konvergen padaA0, atau (fn) konvergen
titik demi titik pada A0. Ini dinotasikan dengan:

f = lim(fn) pada A0 atau fn → f pada A0.

Kadang-kadang, jika fn dan f diberikan dalam bentuk rumus, dituliskan

f(x) = lim fn(x) untuk x ∈ A0, atau fn(x) → f(x) untuk x ∈ A0.

Biasanya, A0 dipilih sebagai himpunan terbesar yang mungkin sehingga semua x ∈ A
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dengan barisan (2.1) konvergen dalam R.

f = lim(fn) pada A0, atau fn → f pada A0.

Contoh 2.1
(a) lim(x/n) = 0 untuk x ∈ R.

Untuk n ∈ N, misalkan fn(x) := x/n dan misalkan f(x) := 0 untuk x ∈ R. Bisa
diamati bahwa untuk untuk x ∈ R barisan (fn(x)) konvergen ke 0 dan oleh karena itu
barisan (fn) konvergen pada R ke f .

(b) lim(xn).
Misalkan gn(x) := xn untuk x ∈ R, n ∈ N. Jelas bahwa jika x = 1, maka barisan
(gn(1)) = (1) konvergen ke 1. Selanjutnya, lim(xn) = 0 untuk 0 ≤ x < 1, dan hal
ini juga berlaku untuk −1 < x < 0. Jika x = −1, maka gn(−1) = (−1)n dan terlihat
bahwa barisan ini divergen. Demikian pula, jika |x| > 1, maka barisan (xn) tidak
terbatas, sehingga tidak konvergen dalam R.
Kita menyimpulkan bahwa jika

g(x) :=

0, −1 < x < 1,

1, x = 1,

maka barisan (gn) konvergen ke g pada himpunan (−1, 1].

(c) lim((x2 + nx)/n) = x untuk x ∈ R.
Misalkan hn(x) := (x2 + nx)/n untuk x ∈ R, n ∈ N, dan misalkan h(x) := x untuk
x ∈ R. Karena hn(x) = (x2/n) + x, diperoleh bahwa hn(x) → h(x) untuk semua
x ∈ R, segingga barisan (hn) konvergen ke h pada himpunan R.

(d) lim((1/n) sin(x+ n)) = 0 untuk x ∈ R.
Misalkan Fn(x) := (1/n) sin(x+n) untuk x ∈ R, n ∈ N, danmisalkan F (x) := 0 untuk
x ∈ R. Karena | sin x| ≤ 1 untuk semua x ∈ R, didapat

|Fn(x) − F (x)| =
∣∣∣∣sin(x+ n)

n

∣∣∣∣ ≤ 1
n

(2.2)

untuk semua x ∈ R. Oleh karena itu, diperoleh bahwa lim(Fn(x)) = 0 = F (x) untuk
semua x ∈ R. Sehingga barisan (Fn) konvergen ke F pada himpunan R.

Untuk menekankan kembali Definisi 2.1 dan untuk mempersiapkan metode yang penting
dalam konvergensi seragam. Berikut dirumuskan kembali Definisi 2.1 sebagai berikut.

Lema 2.1
Barisan fugsi (fn) dari A ⊆ R ke R konvergen ke suatu fungsi f : A0 → R pada A0

jika dan hanya jika untuk setiap ε > 0 dan x ∈ A0 ada bilangan asli K(ε, x) sedemikian
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sehingga jika n ≥ K(ε, x) maka

|fn(x) − f(x)| < ε.

Pembaca diajak untuk menunjukkan bahwa hal ini ekuivalen dengan Definisi 2.1. Perlu
ditekankan bahwa nilai K(ε, x) bergantung pada ε dan x. Dalam Contoh 2.1(a)-(c), terdapat
dua fakta penting: nilaiK(ε, x) diperlukan untukmemperoleh ketaksamaan |fn(x)−f(x)| < ε

dengan n ≥ K(ε, x). Intuisi di balik konvergensi titik demi titik adalah bahwa barisan tersebut
konvergen "cukup cepat" di beberapa titik dibandingkan di titik lain. Namun, dalam Contoh
2.1(d), seperti yang telah ditunjukkan dalam ketaksamaan (2.2), dimungkinkan untukmemilih
K yang bergantung hanya pada ε. Sifat utama ini membedakan antara konvergensi titik demi
titik suatu barisan fungsi dan konsep konvergensi seragam.

2.1.1 Konvergensi Seragam

Definisi 2.2
Barisan fugsi (fn) dari A ⊆ R ke R konvergen seragam pada A0 ⊆ A ke suatu fungsi
f : A0 → R jika dan hanya jika untuk setiap ε > 0 ada bilangan asli K(ε) sedemikian
sehingga jika n ≥ K(ε) maka

|fn(x) − f(x)| < ε, untuk semua x ∈ A0.

Dalam kasus ini dikatakan barisan (fn) konvergen seragam pada A0. Ini dinotasikan
dengan:

fn ⇒ f pada A0 atau fn(x)⇒ f(x) untuk x ∈ A0.

Konsekuensi langsung dari definisi adalah jika barisan (fn) konvergen seragam pada A0

ke f , maka barisan ini juga konvergen titik-demi-titik pada A0 ke f dalam pengertian Definisi
2.1. Selanjutnya amati bahwa konversenya tidak selalu benar dan dapat dilihatmelalui Contoh
2.1(a–c); contoh lain akan diberikan di bawah.

Kadang-kadang berguna untuk memiliki kondisi perlu dan cukup untuk barisan (fn) agar
tidak konvergen seragam pada A0 ke f . Berikut diberikan mengenai hal tersebut yang meru-
pakan bentuk negasi dari Definisi 2.2.

Lema 2.2
Sebuah barisan fungsi (fn) dariA0 ⊆ R keR tidak konvergen seragampadaA0 ke sebuah
fungsi f : A0 → R jika dan hanya jika terdapat ε0 > 0, sebuah subbarisan (fnk

) dari (fn),
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dan sebuah barisan (xk) di A0 sehingga

|fnk
(xk) − f(xk)| ≥ ε0 untuk semua k ∈ N.

Sekarang diberikan contoh bagaimana Lemma 2.2 dapat digunakan.

Contoh 2.2
(a) Perhatikan Contoh 2.1(a). Jika nk := k dan xk := k, maka

fnk
(xk) − f(xk) = |1 − 0| = 1.

Oleh karena itu, barisan (fn) tidak konvergen seragam pada R ke f .

(b) Perhatikan Contoh 2.1(b). Jika nk := k dan xk :=
(1

2

)1/k

, maka

|gnk
(xk) − g(xk)| =

∣∣∣∣12 − 0
∣∣∣∣ = 1

2 .

Oleh karena itu, barisan (gn) tidak konvergen seragam pada (−1, 1] ke g.
(c) Pertimbangkan Contoh 2.1(c). Jika nk := k dan xk := −k, maka hnk

(xk) = 0 dan
h(xk) = −k sehingga |hnk

(xk) − h(xk)| = k. Oleh karena itu, barisan (hn) tidak konver-
gen seragam pada R ke h.

—

2.1.2 Norm Seragam

Dalammembahas konvergensi seragam, sering kali bergunamenggunakan konsep norm ser-
agam pada himpunan fungsi terbatas.

Definisi 2.3
Jika A ⊆ R dan φ : A → R adalah fungsi, dikatakan bahwa φ terbatas pada A jika
himpunan φ(A) adalah himpunan terbatas di R. Jika φ terbatas, didefinisikan norm
seragam dari φ pada A sebagai

∥φ∥A := sup{|φ(x)| : x ∈ A}.

Perhatikan bahwa ini berlaku jikaK > 0, maka

∥φ∥A ≤ K ⇐⇒ |φ(x)| ≤ K untuk semua x ∈ A. (2.3)
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Lema 2.3
Misal (fn) adalah barisan fungsi-fungsi yang terbatas pada A ⊆ R. Barisan fungsi ini
konvergen seragam pada A ke f jika dan hanya jika ∥fn − f∥A → 0.

Bukti. (⇒) Jika (fn) konvergen seragam pada A ke f , maka dari Definisi 2.2, untuk setiap
ε > 0, terdapatK(ε) sehingga jika n ≥ K(ε) dan x ∈ A, maka

|fn(x) − f(x)| < ε.

Dari definisi supremum, berlaku bahwa ∥fn − f∥A < ε untuk n ≥ K(ε). Karena ε > 0 bersifat
sebarang, maka ∥fn − f∥A → 0.

(⇐) Jika ∥fn − f∥A → 0, maka untuk setiap ε > 0, terdapat bilangan bulatH(ε) sehingga
jika n ≥ H(ε) maka ∥fn − f∥A < ε dan dari (2.3) didapatkan bahwa |fn(x) − f(x)| ≤ ε untuk
semua n ≥ H(ε) dan x ∈ A. Oleh karena itu, (fn) konvergen seragam pada A ke f . ■

Sekarang akandiilustrasikan penggunaan Lema2.3 sebagai alat untukmemeriksa barisan
fungsi terbatas terhadap konvergensi seragam.

Contoh 2.3
(a) Lema 2.3 tidak dapat diterapkan pada barisan di Contoh 2.1(a) karena fungsi fn(x)−

f(x) = x/n tidak terbatas pada R.
Sebagai ilustrasi, misalkan A := [0, 1]. Meskipun barisan (x/n) tidak konvergen ser-
agam pada R ke fungsi nol, akan ditunjukkan bahwa konvergensi ini adalah seragam
pada A. Untuk melihat ini, perhatikan bahwa

∥fn − f∥A = sup{|x/n| : 0 ≤ x ≤ 1} = 1
n
.

Sehingga ∥fn − f∥A → 0. Oleh karena itu, (fn) konvergen seragam pada A ke f = 0.

(b) Misalkan gn(x) := xn untuk x ∈ A := [0, 1] dan n ∈ N, serta g(x) := 0 untuk 0 ≤ x < 1
dan g(1) := 1. Fungsi gn(x) − g(x) terbatas pada A dan

∥gn − g∥A = sup

 xn untuk 0 ≤ x < 1,

0 untuk x = 1.

 = 1.

Untuk setiap n ∈ N. Karena ∥gn − g∥A tidak konvergen ke 0, maka bisa disimpulkan
bahwa barisan (gn) tidak konvergen seragam pada A ke g.

(c) Lema 2.3 tidak dapat diterapkan pada barisan di Contoh 2.1(c) karena fungsi hn(x)−
h(x) = x2/n tidak terbatas pada R.
Sebagai gantinya, misalkan A := [0, 8] dan perhatikan

∥hn − h∥A = sup{x2/n : 0 ≤ x ≤ 8} = 64
n
.

Oleh karena itu, barisan (hn) konvergen seragam pada A ke h = 0.
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(d) Jika merujuk pada Contoh 2.1(d), terlihat bahwa ∥Fn − F∥R ≤ 1/n. Maka, (Fn) kon-
vergen seragam pada R ke F .

(e) Misalkan G(x) := xn(1 − x) untuk x ∈ A := [0, 1]. Amati bahwa barisan (Gn(x))
konvergen ke G(x) := 0 untuk setiap x ∈ A. Untuk menghitung norm seragam dari
Gn −G = Gn pada A, dicari turunan dan diselesaikan

G′
n(x) = xn−1(n− (n+ 1)x) = 0

untuk mendapatkan titik xn := n/(n + 1). Ini adalah titik interior dari [0, 1], dan mu-
dah diverifikasi menggunakan Uji Turunan Pertama bahwaGn mencapai maksimum
pada [0, 1] di xn. Oleh karena itu, diperoleh

∥Gn∥A = Gn(xn) = (1 + 1/n)−n · 1
1 + 1/n,

yang konvergen ke 0 ·e−1 = 0. Oleh karena itu konvergensi dari (Gn) adalah seragam
pada A.

Teorema 2.1 Kriteria Cauchy untuk Konvergensi Seragam

Misalkan (fn) adalah suatu barisan fungsi-fungsi terbatas pada A ⊆ R. Barisan ini kon-
vergen seragam pada A ke fungsi terbatas f jika dan hanya jika untuk setiap ε > 0
terdapat suatu bilangan H(ε) dalam N sehingga untuk semua m,n ≥ H(ε), berlaku
∥fm − fn∥A < ε.

Bukti. (⇒) Jika fn → f pada A, maka untuk setiap ε > 0 terdapat suatu bilangan bulatH(ε)
sehingga jika n ≥ H(ε), maka ∥fn − f∥A < ε/2. Oleh karena itu, jikam,n ≥ H(ε), maka

∥fm(x) − fn(x)∥ ≤ |fm(x) − f(x)| + |fn(x) − f(x)| < ε/2 + ε/2 = ε

untuk semua x ∈ A. Oleh karena itu, ∥fm − fn∥A < ε untukm,n ≥ H(ε).
(⇐) Sebaliknya, misalkan untuk ε > 0 terdapat H(ε) sehingga jika m,n ≥ H(ε), maka

∥fm − fn∥A < ε. Dengan demikian, untuk setiap x ∈ A, berlaku

|fm(x) − fn(x)| ≤ ∥fm − fn∥A < ε untukm,n ≥ H(ε). (2.4)

Didapat, (fn(x)) adalah barisan Cauchy dalamR; oleh karena itu barisan tersebut adalah kon-
vergen. Didefinisikan f : A → R dengan

f(x) := lim
n→∞

fn(x) untuk x ∈ A.

Jika diambil n → ∞ untuk (2.4), maka setiap x ∈ A, berlaku

|fm(x) − f(x)| < ε untukm ≥ H(ε).
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Oleh karena itu, barisan (fn) konvergen seragam pada A ke f .
■

2.1.3 Latihan

1. Tunjukkan bahwa lim x

x+ n
= 0 untuk semua x ∈ R, x ≥ 0.

2. Tunjukkan bahwa lim nx

1 + n2x2 = 0 untuk semua x ∈ R.

3. Hitung lim nx

1 + nx
untuk x ∈ R, x ≥ 0.

4. Hitung lim xn

1 + xn
untuk x ∈ R, x ≥ 0.

5. Hitung lim sin(nx)
1 + nx

untuk x ∈ R, x ≥ 0.

6. Tunjukkan bahwa lim arctan(nx) = π

2 sgn(x) untuk x ∈ R.

7. Hitung lim e−nx untuk x ∈ R, x ≥ 0.

8. Tunjukkan bahwa lim xe−nx = 0 untuk x ∈ R, x ≥ 0.

9. Tunjukkan bahwa lim x2e−nx = 0 dan limn2x2e−nx = 0 untuk x ∈ R, x ≥ 0.

10. Tunjukkan bahwa lim(cos(πx))2n ada untuk semua x ∈ R. Berapa nilainya?

11. Tunjukkan bahwa jika a > 0, maka barisan pada Soal 1 konvergen secara seragam pada
interval [0, a], tetapi tidak konvergen secara seragam pada interval [0,∞).

12. Tunjukkan bahwa jika a > 0, maka barisan pada Soal 2 konvergen secara seragam pada
interval [a,∞), tetapi tidak konvergen secara seragam pada interval [0,∞).

13. Tunjukkan bahwa jika a > 0, maka barisan pada Soal 3 konvergen secara seragam pada
interval [a,∞), tetapi tidak konvergen secara seragam pada interval [0,∞).

14. Tunjukkan bahwa jika 0 < b < 1, maka barisan pada Soal 4 konvergen secara seragam
pada interval [0, b], tetapi tidak konvergen secara seragam pada interval [0, 1].

15. Tunjukkan bahwa jika a > 0, maka barisan pada Soal 5 konvergen secara seragam pada
interval [a,∞), tetapi tidak konvergen secara seragam pada interval [0,∞).

16. Tunjukkan bahwa jika a > 0, maka barisan pada Soal 6 konvergen secara seragam pada
interval [a,∞), tetapi tidak konvergen secara seragam pada interval [0,∞).

17. Tunjukkan bahwa jika a > 0, maka barisan pada Soal 7 konvergen secara seragam pada
interval [a,∞), tetapi tidak konvergen secara seragam pada interval [0,∞).

18. Tunjukkan bahwa barisan pada Soal 8 konvergen secara seragam pada [0,∞).

19. Tunjukkan bahwa barisan x2e−nx konvergen secara seragam pada [0,∞).

20. Tunjukkan bahwa jika a > 0, maka barisan n2x2e−nx konvergen secara seragam pada in-
terval [a,∞), tetapi tidak konvergen secara seragam pada interval [0,∞).
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21. Tunjukkan bahwa jika (fn), (gn) konvergen secara seragampadahimpunanA ke f, g, masing-
masing, maka (fn + gn) konvergen secara seragam pada A ke f + g.

22. Tunjukkan bahwa jika fn(x) := x + 1/n dan f(x) := x untuk x ∈ R, maka (fn) konvergen
secara seragam pada R ke f , tetapi barisan (f2

n) tidak konvergen secara seragam pada R.
(Dengan demikian, hasil kali dari barisan fungsi yang konvergen secara seragam mungkin
tidak konvergen secara seragam.)

23. Misalkan (fn), (gn) adalah barisan fungsi terbatas padaA yang masing-masing konvergen
secara seragam pada A ke f, g. Tunjukkan bahwa (fngn) konvergen secara seragam pada
A ke fg.

24. Misalkan (fn) adalah barisan fungsi yang konvergen secara seragam ke f pada A dan
memenuhi |fn(x)| ≤ M untuk semua n ∈ N dan semua x ∈ A. Jika g kontinu pada interval
[−M,M ], tunjukkan bahwa barisan (g ◦ fn) konvergen secara seragam ke g ◦ f pada A.

2.2 Pertukaran limit

Sering kali berguna untuk mengetahui apakah limit dari suatu barisan fungsi merupakan
fungsi kontinu, fungsi terdiferensialkan, atau fungsi yangdapat diintegralkan secaraRiemann.
Sayangnya, tidak selalu terjadi bahwa limit dari suatu barisan fungsimemiliki sifat-sifat berguna
tersebut.

Contoh 2.4
(a) Misalkan gn(x) := xn untuk x ∈ [0, 1] dan n ∈ N. Maka, seperti yang telah dicatat

dalam Contoh 2.1(b), barisan (gn) konvergen pointwise ke fungsi:

g(x) :=

0 untuk 0 ≤ x < 1,

1 untuk x = 1.

Meskipun semua fungsi gn adalah kontinu di x = 1, fungsi limit g tidak kontinu di
x = 1. Ingat bahwa telah ditunjukkan dalam Contoh 2.2(b) bahwa barisan ini tidak
konvergen secara seragam ke g pada [0, 1].

(b) Setiap fungsi gn(x) := xn dalam bagian (a) memiliki turunan kontinu pada [0, 1]. Na-
mun, fungsi limit g tidak memiliki turunan di x = 1, karena tidak kontinu di titik terse-
but.

(c) Misalkan fn : [0, 1] → R didefinisikan untuk n ≥ 2 oleh:

fn(x) :=


n2x untuk 0 ≤ x ≤ 1/n,

−n2(x− 2/n) untuk 1/n ≤ x ≤ 2/n,

0 untuk 2/n ≤ x ≤ 1.
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Jelas bahwa setiap fungsi fn kontinu pada [0, 1]; sehingga dapat diintegralkan secara
Riemann. Baik melalui perhitungan langsung, atau dengan merujuk pada makna in-
tegral sebagai luas, diperoleh:∫ 1

0
fn(x) dx = 1 untuk n ≥ 2.

Pembaca dapat menunjukkan bahwa fn(x) → 0 untuk semua x ∈ [0, 1]; sehingga
fungsi limit f bernilai nol dan kontinu (dan karenanya dapat diintegralkan), dan:∫ 1

0
f(x) dx = 0.

Oleh karena itu, didapat hasil:∫ 1

0
f(x) dx = 0 ̸= lim

∫ 1

0
fn(x) dx.

(d) Diberikan barisan (hn) yang didefinisikan oleh hn(x) := 2nxe−nx2
untuk x ∈ [0, 1],

n ∈ N. Karena hn = H ′
n, denganHn(x) := −e−nx2

, didapat∫ 1

0
hn(x)dx = Hn(1) −Hn(0) = 1 − e−n.

Dapat dibuktikan bahwa h(x) := lim(hn(x)) = 0 untuk semua x ∈ [0, 1] dan∫ 1

0
h(x)dx ̸= lim

∫ 1

0
hn(x)dx.

Terlihat bahwa hipotesis tambahan berupa konvergensi seragam cukup untuk menjamin
bahwa limit dari barisan fungsi kontinu adalah kontinu. Hasil serupa juga akan dibuktikan
untuk barisan fungsi yang terdiferensialkan dan terintegralkan.

Teorema 2.2
Misal (fn) barisan fungsi kontinu pada himpunan A ⊆ R. Jika (fn) konvergen seragam
pada A ke fungsi f : A → R, maka f kontinu pada A.

Bukti. Misal ε sebarang bilangan real positif dan c sebarang bilangan di A.

✿ Karena (fn) konvergen seragam pada A ke fungsi f : A → R, didapatkan H := H(ε/3)
sedemikian sehingga jika n ≥ H maka |fn(x) − f(x)| < ε/3 untuk semua x ∈ A.

✿ Karena fn adalah fungsi kontinu pada A untuk semua n ∈ N, didapatkan δn = δ(1
3 , c, fn)

sedemikian sehingga jika |x− c| < δn dan x ∈ Amaka |fn(x) − fn(c)| < ε/3.
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Oleh karena itu, ada δ := δH = δ(1
3 , c, fH) sehingga jika |x− c| < δ dan x ∈ Amaka

|f(x) − f(c)| ≤ |f(x) − fH(x)| + |fH(x) − fH(c)| + |fH(c) − f(c)|

<
ε

3 + ε

3 + ε

3 = ε.

■

☞ Catatan 2.1
Meskipun konvergensi seragam dari barisan fungsi kontinu cukup untuk menjamin kekontin-
uan fungsi limit, tapi itu bukan syarat perlu (lihat soal latihan pada subbab ini pada soal
nomer 2).

2.2.1 Pertukaran Limit dan Turunan

Sekarang ditunjukkan bahwa jika barisan turunan (f ′
n) konvergen seragam pada interval J ,

maka barisan (fn) konvergen seragam pada J ke fungsi f yang mempunyai turunan di setiap
titik di J dan f ′ = g.

Teorema 2.3
Misal J ⊆ R interval terbatas dan misal (fn) barisan fungsi dari J ke R. Jika ada x0 ∈
J sedemikian sehingga (fn(x0)) konvergen dan barisan turunan (f ′

n) pada J ada dan
konvergen seragam pada J ke fungsi g, maka barisan (fn) konvergen seragam pada J
ke fungsi f yang mempunyai turunan di setiap titik di J dan f ′ = g.

Bukti. ✿ Bukti (fn) konvergen seragam pada A (misal lim(fn) = f )
Misal a, b adalah titik-titik ujung dari interval J dengan a titik ujung kiri dan b titik ujung
kanan. Dengan menerapkan Teorema nilai rata-rata didapatkan bahwa untuk setiap x ∈ J

ada y ∈ J sehingga

fm(x) − fn(x) = fm(x0) − fn(x0) +
[
f ′

m(y) − f ′
n(y)

]
(x− x0).

Karena (fn(x0)) konvergen dan (f ′
n) konvergen seragam pada J , didapatkan bahwa untuk

setiap ε > 0 adaM := M(ε/(1 + (b− a))) sedmikian sehingga jikam,n ≥ M maka

|fm(x) − fn(x)| ≤ |fm(x0) − fn(x0)| +
∣∣∣f ′

m(y) − f ′
n(y)

∣∣∣|x− x0| < ε.

Jadi (fn) konvergen seragam pada A.

✿ Bukti f fungsi kontinu
Karena f ′

n ada padaA untuk setiap n ∈ N, didapatkan fn kontinu untuk setiap n ∈ N. Lebih
lanjut, karena (fn) konvergen seragam, diperoleh f kontinu.
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✿ Bukti f ′(c) ada untuk setiap c ∈ J

Misal c sebarang bilangan real. Lagi, gunakan Teorema nilai rata didapatkan bahwa untuk
setiap x ∈ J ada z ∈ J sehingga

fm(x) − fn(x) = fm(c) − fn(c) +
[
f ′

m(z) − f ′
n(z)

]
(x− c).

Untuk x ̸= c, didapatkan

fm(x) − fm(c)
x− c

− fn(x) − fn(c)
x− c

= f ′
m(z) − f ′

n(z).

Karena (f ′
n) konvergen seragam pada J , didapatkan bahwa untuk setiap ε > 0 ada M :=

M(ε) sedmikian sehingga jikam,n ≥ M maka∣∣∣fm(x) − fm(c)
x− c

− fn(x) − fn(c)
x− c

∣∣∣ < ε.

Ambil limit terhadapm dari ruas kiri dan kanan diperoleh∣∣∣f(x) − f(c)
x− c

− fn(x) − fn(c)
x− c

∣∣∣ < ε. (2.5)

Selanjutnya, karena g(c) = lim(f ′
n(c)), ada N(ε) ∈ N sedemikian sehingga jika n ≥ N(ε),

maka
|f ′

n(c) − g(c)| < ε. (2.6)

Sekarang, ambilK := max{M(ε), N(ε)}. Karena f ′
K(c) ada, didapat bahwa terdapat δK(ε) >

0 sedemikian sehingga jika 0 < |x− c| < δK(ε), maka∣∣∣fK(x) − fK(c)
x− c

− f ′
K(c)

∣∣∣ < ε. (2.7)

Gabungkan (2.5), (2.6) dan (2.7) didapatkan∣∣∣f(x) − f(c)
x− c

− g(c)
∣∣∣

≤
∣∣∣f(x) − f(c)

x− c
− fK(x) − fK(c)

x− c

∣∣∣+ ∣∣∣fK(x) − fK(c)
x− c

− f ′
K(c)

∣∣∣
+|f ′

K(c) − g(c)|

< 3ε.

Sehingga f ′(c) ada dan f ′(c) = g(c).
■
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2.2.2 Pertukaran Limit dan Integral

Kita telah melihat pada Contoh 2.4(c) bahwa jika fn adalah sebuah barisan fungsi di R[a, b]
yang konvergen pada [a, b]menuju fungsi f ∈ R[a, b], maka hal tersebut tidak selalumenjamin
bahwa ∫ b

a
f = lim

n→∞

∫ b

a
fn.

Sekarang, akan ditunjukkan bahwa konvergensi seragam dari barisan tersebut cukup untuk
menjamin bahwa persamaan ini berlaku.

Teorema 2.4
Misal (fn) barisan fungsi di R[a, b]. Jika (fn) konvergen seragam pada [a, b] ke f , maka

f ∈ R[a, b] dan memenuhi
∫ b

a
f = lim

n→∞

∫ b

a
fn.

Bukti. ✿ Bukti
∫ b

a
fn konvergen ke suatu bilangan, misal A

Berdasarkan kriteria Cauchy didapatkan bahwa untuk sebarang bilangan real positif ε ada
H(ε) sedemikian sehingga jikam > n ≥ H(ε) maka

−ε < fm(x) − fn(x) < ε untuk x ∈ [a, b].

Berdasarkan sifat ketaksamaan pada integral, diperoleh

−ε(b− a) <
∫ b

a
fm −

∫ b

a
fn < ε(b− a). untuk x ∈ [a, b].

Oleh karena itu (
∫ b

a
fm) adalah barisan Cauchy di R, yang artinya konvergen ke suatu bi-

langan, misalkan A.

✿ Bukti f ∈ R[a, b] dan
∫ b

a
f = A = lim

n→∞

∫ b

a
fn

Karena (fn) konvergen seragampada [a, b] ke f , didapatkanK(ε) sedemikian sehingga jika
m ≥ K(ε) maka

|fm(x) − f(x)| < ε (2.8)

untuk semua x ∈ [a, b]. Jika Ṗ := {([xi−1, xi], ti)}r
i=1 sebarang partisi bertanda pada [a, b]

dan jikam ≥ K(ε), maka dengan menggunakan (2.8) didapat

|S(fm; Ṗ) − S(f ; Ṗ)| =
∣∣∣ n∑

i=1
[fm(ti) − f(ti)](xi − xi−1)

∣∣∣
≤

n∑
i=1

|fm(ti) − f(ti)|(xi − xi−1) <
n∑

i=1
ε(xi − xi−1) = ε(b− a). (2.9)
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Sekarang gunakan hasil bahwa barisan (
∫ b

a
fm) konvergen ke A, didapatkan ada M :=

M(ε) ∈ N sedemikian sehingga jikam ≥ M maka∣∣∣ ∫ b

a
fm −A

∣∣∣ < ε. (2.10)

Selanjutnya terapkan fakta f ∈ R[a, b], didapatkan ada δm,ε > 0 sedemikian sehingga jika
∥Ṗ∥ < δm,ε maka ∣∣∣ ∫ b

a
fm − S(fm, Ṗ)

∣∣∣ < ε. (2.11)

Gabungkan (2.9), (2.10) dan (2.11), diperoleh δm,ε > 0 denganm = max{K,M} sedemikian
sehingga jika ∥Ṗ∥ < δm,ε maka

|S(f ; Ṗ) −A| ≤ |S(f ; Ṗ) − S(fm; Ṗ)| + |S(fm; Ṗ) −
∫ b

a
fm| +

∣∣∣ ∫ b

a
fm −A

∣∣∣
< 3ε.

■

Hipotesis konvergensi seragammerupakan syarat yang sangat ketat danmembatasi pen-
erapan hasil ini. Pada bagian ini, akan dikemukakan sebuah hasil yang tidak memenuhi kon-
vergensi seragam, tetapimengharuskan fungsi limitnya dapat diintegralkan dalampengertian
Riemann.

Teorema 2.5
Misal (fn) barisan fungsi di R[a, b] yang konvergen pada [a, b] ke fungsi f ∈ R[a, b]. Jika
ada B > 0 sedemikian sehingga |fn(x)| ≤ B untuk semua x ∈ [a, b] dan n ∈ N, maka
memenuhi ∫ b

a
f = lim

n→∞

∫ b

a
fn.

Bukti. Pembuktiannya sama seperti teorema pertukaran limit dan integral. Perbedaannya
terletak pada cara mendapatkan (2.10), yaitu dari asumsi bahwa ada B > 0 sedemikian se-

hingga |fn(x)| ≤ B untuk semua x ∈ [a, b] dan n ∈ N, didapatkan barisan (
∫ b

a
fm) terbatas

dan oleh karena itu terdapat sub-barisan (
∫ b

a
frm) yang konvergen misal konvergen ke A. Se-

lanjutnya untuk pertidaksamaan yang lain bisa didapatkan dengan cara yang sama seperti
teorema pertukaran limit dan integral. ■

2.2.3 Teorema Dini

Pada subbab ini akan diakhiri dengan sebuah teorema terkenal oleh Ulisse Dini (1845–1918).
Di sini pembuktian menggunakan gauge tidak konstan.
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Teorema 2.6 Teorem Dini

Jika (fn) barisan fungsi monoton kontinu pada I := [a, b] yang konvergen pada I ke
fungsi kontinu f , maka barisan tersebut kontinu seragam.

Bukti. Misalkan {fn} adalah barisan menurun dan gm := fm − f . Diperoleh {gm} adalah
barisan fungsi kontinu yang menurun dan konvergen pada I ke fungsi 0. Akan ditunjukkan
bahwa konvergensi ini seragam pada I.

Diberikan ε > 0, t ∈ I , terdapat mt,ε ∈ N sehingga 0 ≤ gmt,ε(x) < ε/2. Karena gmt,ε

kontinu di t, terdapat δt(ε) > 0 sehingga 0 ≤ gmt,ε(x) < ε untuk semua x ∈ I yang memenuhi
|x−t| < δt(ε). Diperoleh δt adalah gauge pada I , dan jika Ṗ = {([ti−1, ti], ti)}n

i=1 adalah partisi
bertanda δt-fine dan didefinisikanMε := max{mt1,ε, . . . ,mtn,ε}. Jikam ≥ Mε dan x ∈ I , maka
(dengan Lemma gauges (Lihat Lemma 5.5.3 pada buku Bartles)) terdapat indeks i sehingga
|x− ti| ≤ δti(ε) dan oleh karena itu

0 ≤ gm(x) ≤ gmti,ε(x) < ε.

Dengan demikian, barisan {gm} konvergen secara seragam ke fungsi 0. ■

? Latihan

1. Tunjukkan bahwa barisan xn/(1+xn) tidak konvergen seragam pada [0, 2], denganmenun-
jukkan bahwa fungsi limit tidak kontinu pada [0, 2].

2. Konstruksi sebuah barisan fungsi pada [0, 1] yang setiap elemennya tidak kontinu di setiap
titik [0, 1] tetapi konvergen seragam ke fungsi yang kontinu pada [0, 1].

3. Misalkan {fn} adalah barisan fungsi kontinu pada interval I yang konvergen seragampada
I ke fungsi f . Jika {xn} ⊂ I konvergen ke x0 ∈ I , tunjukkan bahwa lim fn(xn) = f(x0).

4. Misalkan f : R → R kontinu seragam pada R dan fn(x) := f(x + 1/n) untuk x ∈ R.
Tunjukkan bahwa {fn} konvergen seragam pada R ke f .

5. Misalkan fn(x) := 1/(1 + xn) untuk x ∈ [0, 1]. Temukan limit titik demi titik f dari barisan
{fn} pada [0, 1]. Apakah {fn} konvergen seragam ke f pada [0, 1]?

6. Misalkan barisan {fn} konvergen seragam ke f pada himpunan A, dan setiap fn terbatas
pada A. Tunjukkan bahwa fungsi f terbatas pada A.

7. Misalkan fn(x) := nx/(1 + nx2) untuk x ∈ A := [0,∞). Tunjukkan bahwa {fn} konvergen
tidak seragam ke fungsi terintegral f pada A, tetapi limit titik demi titik dari barisan tidak
terbatas pada A.

8. Misal fn(x) = xn/n untuk x ∈ [0, 1]. Tunjukkan bahwa barisan fungsi yang dapat ditu-
runkan fn konvergen seragam ke fungsi yang dapat diturunkan f pada [0, 1] dan bahwa
barisan (f ′

n) pada [0, 1] konvergen ke fungsi g, tetapi g(1) ̸= f ′(1).

9. Misalkan gn(x) := e−nx untuk x ≥ 0, n ∈ N. Periksa hubungan antara lim gn(x) dan lim g′
n.
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10. Misalkan I := [a, b] dan {fn} adalah barisan fungsi kontinu pada I yang konvergen pada
I ke f . Misalkan turunan f ′

n kontinu pada I dan {f ′
n} konvergen seragam ke g. Tunjukkan

bahwa f(x) − f(a) =
∫ x

a
g(t) dt dan bahwa f ′(x) = g(x) untuk semua x ∈ I.

11. Tunjukkan bahwa
∫ ∞

0
e−nx2

dx = 0 untuk semua n ∈ N.

12. Jika a > 0, tunjukkan bahwa lim
n→∞

∫ ∞

a

sin(nx)
(nx)2 dx = 0. Apa yang terjadi jika a = 0?

13. Misalkan fn(x) := nx/(1 + nx) untuk x ∈ [0, 1]. Tunjukkan bahwa {fn} konvergen tidak

seragam ke fungsi terintegral f pada [0, 1] dan bahwa
∫ 1

0
f(x)dx = lim

n→∞

∫ 1

0
fn(x)dx.

14. Misalkan gn(x) := nx(1 − x)n untuk x ∈ [0, 1], n ∈ N. Diskusikan konvergensi {gn} dan∫ 1

0
gn(x)dx.

15. Misalkan fn adalah enumerasi bilangan rasional di I := [0, 1] danmisalkan fn didefinisikan
menjadi 1 jika x = r1, r2, . . . , rn dan sama dengan 0 di tempat lain. Tunjukkan bahwa f
adalah fungsi terintegral Riemann untuk setiap n ∈ N, bahwa {f1(x) ≤ f2(x) ≤ · · · }, dan
bahwa f(x) := lim

n→∞
fn(x) adalah fungsi Dirichlet yang tidak terintegral Riemann pada [0, 1].

16. Misalkan fn(x) := 1 untuk x ∈ (0, 1/n) dan fn(x) := 0 untuk x lainnya di [0, 1]. Tunjukkan
bahwa {fn} adalah barisan fungsimenurun tidak kontinu yang konvergen ke fungsi kontinu
tetapi tidak seragam pada [0, 1].

17. Misalkan fn(x) := xn untuk x ∈ [0, 1], n ∈ N. Tunjukkan bahwa {fn} adalah barisan fungsi
kontinu yang menurun ke fungsi kontinu, tetapi konvergensinya tidak seragam pada [0, 1].

18. Misalkan fn(x) := x/n untuk x ∈ [0,∞), n ∈ N. Tunjukkan bahwa {fn} adalah barisan
fungsi kontinu yang menurun ke fungsi limit kontinu, tetapi konvergensinya tidak seragam
pada [0,∞).

19. Berikan contoh barisan menurun {fn} dari fungsi kontinu pada [0, 1] yang konvergen ke
fungsi kontinu, tetapi konvergensinya tidak seragam pada [0, 1].
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Bab 3 Deret Tak Hingga

3.1 Konvergen Mutlak

Definisi 3.1 Deret Tak Hingga

Jika X := (xn) suatu barisan di R, maka deret tak hingga (atau disederhanakan deret)
dibangun olehX adalah barisan S := (sk) yang didefinisikan oleh

s1 := x1

s2 := s1 + x2 (= x1 + x2)
...

sk := sk−1 + xk (= x1 + x2 + · · · + xk)
...

Bilangan xn disebut suku-suku deret tersebut, dan bilangan sk disebut jumlah parsial
deret tersebut. Jika lim S ada, kita katakan bahwa deret ini konvergen dan menyebut
limit ini sebagai jumlah atau nilai deret tersebut. Jika limit ini tidak ada, maka deret S
dikatakan divergen.

Definisi 3.2 Konvergen Mutlak dan Konvergen Bersyarat

MisalX := (xn) suatu barisan diR. Dikatakan bahwaderet
∑

xn konvergenmutlak jika
deret

∑
|xn| konvergen di R. Deret dikatakan konvergen bersyarat (atau tidak mutlak)

jika konvergen, tetapi tidak konvergen mutlak.

Teorema 3.1 Konvergen Mutlak dan Konvergen Bersyarat

Jika deret
∑

xn di R konvergen mutlak, maka
∑

xn juga konvergen.

Bukti. Karena
∑

|xn| konvergen, diperoleh
∑

|xn| adalah barisan Cauchy dan oleh karena
itu untuk setiap ε > 0 adaM(ε) ∈ N sedemikian sehingga jikam > n ≥ M(ε), maka

|xn+1| + |xn+2| + · · · + |xm| < ε.

Kemudian berdasarkan ketaksamaan segitiga, diperoleh

|sm − sn| = |xn+1 + xn+2 + · · · + xm| ≤ |xn+1| + |xn+2| + · · · + |xm| < ε,

dengan sn =
n∑

i=1
xi. Oleh karena itu

∑
xn konvergen. ■
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3.1.1 Pengelompokan

Diberikan suatu deret
∑

xn. Dapat dikonstruksi deret
∑

yk lainnya denganmembiarkan uru-
tan suku xn danmenyisipkan tanda kurung yangmengelompokkan sejumlah suku berhingga.
Sebagai contoh perhatikan pengelompokan deret harmonik berganti tanda berikut

1 − 1
2 +

(1
3 − 1

4

)
+
(1

5 − 1
6 + 1

7

)
− 1

8 +
(1

9 − · · · + 1
13

)
− · · · .

Fakta menariknya adalah pengelompokan seperti itu tidak mempengaruhi konvergensi dan
nilai konvergennya.

Teorema 3.2 Pengelompokan Deret

Jika deret
∑

xn konvergen, maka setiap deret yang diperoleh dari deret tersebut dengan
melakukan pengelompokan juga konvergen dan nilai konvergensinya sama.

Jelas bahwa kebalikan dari teorema ini tidak benar. Misal pengelompokan deret berganti
tanda

∑
(−1)n diberikan oleh

(1 − 1) + (1 − 1) + (1 − 1) + · · · .

Bisa diamati pengelompokan tersebut konvergen, tetapi deret
∑

(−1)n divergen.

Bukti. Misal deret
∑

yn adalah deret yang diperoleh dari deret
∑

xn dengan melakukan
pengelompokan. Dengan demikian bisa dituliskan

y1 := x1 + · · · + xk, y2 := xk1+1 + · · · + xk2 , · · ·

dengan 1 ≤ k1 < k2 < k3 < · · · . Jika sn menyatakan jumlahan parsial ke-n dari
∑

xi dan tk
menyatakan jumlahan parsial ke-k dari

∑
yi, maka diperoeh

t1 = y1 = sk1 , t2 = y1 + y2 = sk2 , · · · .

Oleh karena itu barisan (tn) merupakan sub-barisan dari (sn). Karena (sn) konvergen, diper-
oleh barisan (tn) juga konvergen dan nilai konvergensinya sama. ■

Definisi 3.3 Penyusunan Ulang Deret

eret
∑

yn di R adalah penyusunan ulang dari deret
∑

xn jika ada fungsi bijektif f :
N → N sedemikian sehingga yk = xf(k) untuk semua k ∈ N.

Sederhananya, “penyusunan ulang” suatu deret
∑

xn adalah deret lain yang diperoleh
dari deret

∑
xn dengan menggunakan semua suku tepat satu kali tetapi mengacak urutan

pengambilan sukunya.
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Jika
∑

xn merupakan deret konvergen bersyarat di R, dan jika c sebarang bilangan real,
maka terdapat penyusunan ulang yang konvergen ke c. Untuk membuktikan pernyataan ini,
pertama-tama kita perhatikan bahwa suatu deret konvergen bersyarat harus mengandung
suku-suku positif yang sebanyak tak terhingga dan suku-suku negatifnya juga sebanyak tak
terhingga, dan baik deret suku-suku positif maupun deret suku-suku negatifnya divergen. Un-
tuk membuat suatu deret yang konvergen ke c, diambil suku-suku positif sampai jumlah par-
sialnya lebih besar dari c, lalu diambil suku-suku negatifnya sampai jumlah parsialnya kurang
dari c. Lakukan ini seterusnya, sehingga didapat deret yang konvergen ke-c.

3.1.2 Penyusunan Ulang Deret

Teorema 3.3

Jika
∑

xn adalah deret yang konvergen mutlak di R dan
∑

xn konvergen ke x maka
sebarang penyusunan ulang

∑
yk dari

∑
xn konvergen ke x.

Bukti. Misal
∑

xn adalah deret yang konvergen mutlak di R dan
∑

xn konvergen ke x. Oleh
karena itu, untuk sebarang ε > 0, ada N ∈ N sedemikian sehingga jika n, q > N dan sn :=
x1 + · · · + xn, maka

|x− sn| < ε dan
q∑

k=N+1
|xk| < ε.

MisalM ∈ N sedemikian sehingga semua sukux1, · · · , xN termuat dalam jumlahan {y1, y2, · · · , yM }.
Perhatikan bahwa jikam ≥ M dan tm := y1 + · · · + ym, maka ada q > N sehingga x1, · · · , xn

dan y1, · · · , ym termuat dalam {x1, · · · , xq} sehingga

|x− tm| ≤ |x− sn| + |sn − tm| ≤ |x− sn| +
q∑

k=N+1
|xk| < ε+ ε = 2ε.

■

3.1.3 Latihan

1. Tunjukkan bahwa jika suatu deret konvergen hanya memuat sejumlah suku negatif yang
berhingga, maka deret tersebut konvergen mutlak.

2. Tunjukkan bahwa jika suatu deret konvergen bersyarat, maka deret yang diperoleh dari
suku-suku positifnya adalah divergen, dan deret yang diperoleh dari suku-suku negatifnya
adalah divergen.

3. Jika
∑

an konvergen bersyarat, berikan argumenuntukmenunjukkan bahwa terdapat penyusunan
ulang yang jumlah parsialnya divergen ke ∞.

4. Jika
∑

an konvergen mutlak dan (bn) barisan terbatas, tunjukkan bahwa
∑

anbn konver-
gen mutlak.
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5. Jika (an) adalah barisan turun dari bilangan real positif dan jika
∑

an konvergen, tunjukkan
bahwa lim(nan) = 0.

3.2 Uji Konvergen Mutlak

3.2.1 Uji Banding

Teorema 3.4
MisalX := (xn) dan Y = (yn) barisan bilangan real dan ditentukan bahwa untukK ∈ N

didapatkan
0 ≤ xn ≤ yn, untuk n ≥ K.

(a) Jika deret
∑

yn konvergen, maka deret
∑

xn juga konvergen.

(b) Jika deret
∑

xn divergen, maka deret
∑

yn juga divergen.

Bukti. Di sini hanya dibuktikan bagian (a), karena (b) kontrapositif dari (a). Misal deret
∑

yn

konvergen dan diberikan ε > 0. Berdasarkan kriteria Cauchy untuk deret, diperoleh bahwa
adaM(ε) > 0 sedemikian hingga jikam > n ≥ M(ε), maka

yn+1 + · · · + ym < ε.

Jika n > sup{K,M(ε)}, maka didapat

0 ≤ xn+1 + · · · + xm ≤ yn+1 + · · · + ym < ε,

yang artinya deret
∑

xn konvergen. ■

3.2.2 Uji Banding Limit

Teorema 3.5
isalX := (xn) dan Y = (yn) barisan real tak-nol dan ditentukan bahwa limit di bawah ini
ada di R:

r := lim
∣∣∣∣xn

yn

∣∣∣∣ . (3.1)

(a) Jika r ̸= 0, maka
∑

xn konvergen mutlak jika dan hanya jika
∑

yn konvergen mutlak.

(b) Jika r = 0 dan
∑

yn konvergen mutlak maka
∑

xn konvergen mutlak.

Bukti. (a) Misal r ̸= 0. Berdasarkan (3.1) diperoleh bahwa ada K ∈ N sedemikian sehingga
1
2r ≤ |xn|/|yn| ≤ 3

2r untuk n ≥ K. Akibatnya didapatkan
1
2r|yn| ≤ |xn| ≤ 3

2r|yn|, untuk
n ≥ K. Dengan menggunakan uji banding, sehingga didapatkan (a).
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(b) Sekarang,misal r = 0. Denganmenggunakan (3.1) diperoleh bahwaadaK ∈ N sedemikian
sehingga 0 ≤ |xn|/|yn| ≤ 1 untuk n ≥ K. Hal ini berimplikasi bahwa 0 ≤ |xn| ≤ |yn|, untuk
n ≥ K. Lagi, gunakan uji banding, sehingga didapatkan (b). ■

Contoh 3.1
Dengan menggunakan uji banding limit, periksa kekonvergenan deret:

∑ 1
n2 .

3.2.3 Uji Akar

Teorema 3.6
MisalX = (xn) barisan di R.

(a) Jika ada r ∈ R dengan r < 1 danK ∈ N sedemikian sehingga

|xn|1/n ≤ r, untuk n ≥ K, (3.2)

maka deret
∑

xn konvergen mutlak.

(b) Jika adaK ∈ N sedemikian sehingga

|xn|1/n ≥ 1, untuk n ≥ K, (3.3)

maka deret
∑

xn divergen.

Bukti. Bukti: (a) Berdasarkan (3.2) diperoleh |xn| ≤ rn untuk n ≥ K. Dengan menggunakan
Uji Banding dan dengan menggunakan fakta bahwa deret geometri

∑
rn konvergen, dida-

patkan deret
∑

xn konvergen. (b) Dari (3.3) didapatkan |xn| ≥ 1 untuk n ≥ K. Dengan
menerapkan Uji Banding dan menggunakan fakta bahwa deret

∑
1 divergen, diperoleh deret∑

xn divergen. ■

Akibat 3.1
MisalX = (xn) barisan di R dan ditentukan

r := lim |xn|1/n (3.4)

ada di R. Didapatkan bahwa
∑

xn konvergen mutlak saat r < 1 dan divergen saat
r > 1.

☞ Catatan 3.1
Jika r = 1, maka deret mungkin konvergen ataupun divergen, sehingga perlu uji yang lain.
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Bukti. Bukti: Jika limit di (3.4) ada dan r < 1 maka untuk ε > 0 ada K ∈ N sedemikian
sehingga |xn|1/n < r + ε untuk n > K. Berdasarkan sifat kepadatan bilangan real, diperoleh
r1 ∈ R sehingga r < r1 < 1. Sekarang pilih ε = r1 − r, didapatkan |xn|1/n < r1 untuk n > K.
Dengan menerapkan Teorema Uji Akar (a), bisa disimpulkan deret

∑
xn konvergen.

Lebih lanjut jika limit di (3.4) ada dan r > 1 maka untuk ε > 0 adaK ∈ N sedemikian sehingga
|xn|1/n > r − ε untuk n > K. Berdasarkan sifat kepadatan bilangan real, diperoleh r1 ∈ R

sehingga 1 < r1 < r. Sekarang pilih ε = r − r1, didapatkan |xn|1/n > r1 > 1 untuk n > K.
Dengan menerapkan Teorema Uji Akar (b), bisa disimpulkan deret

∑
xn divergen. ■

Contoh 3.2
Dengan menggunakan uji akar, periksa kekonvergenan deret:

∑ 1
np
, untuk p > 0.

3.2.4 Uji Rasio

Teorema 3.7
MisalX = (xn) barisan tak-nol di R.

(a) Jika ada r ∈ R dengan 0 < r < 1 danK ∈ N sedemikian sehingga∣∣∣∣xn+1
xn

∣∣∣∣ ≤ r, untuk n ≥ K, (3.5)

maka deret
∑

xn konvergen mutlak.

(b) Jika adaK ∈ N sedemikian sehingga∣∣∣∣xn+1
xn

∣∣∣∣ ≥ 1, untuk n ≥ K, (3.6)

maka deret
∑

xn divergen.

Bukti. (a) Jika (3.5) terpenuhi untuk 0 < r < 1, maka diperoleh |xK+m| ≤ |xK |rm untuk
m ∈ N. Dengan menggunakan Uji Banding dan dengan menggunakan fakta bahwa deret
geometri

∑
|xK |rn konvergen, didapatkan deret

∑
xn konvergen. (b) Jika (3.6) terpenuhi,

maka diperoleh |xK+m| ≥ |xK | untukm ∈ N. Dengan menggunakan Uji Banding dan dengan
menggunakan fakta bahwa deret

∑
|xK | divergen, didapatkan deret

∑
xn divergen. ■

Akibat 3.2
MisalX = (xn) barisan tak-nol di R dan ditentukan

r := lim
∣∣∣∣xn+1
xn

∣∣∣∣ (3.7)
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ada di R. Didapatkan bahwa
∑

xn konvergen mutlak saat r < 1 dan divergen saat
r > 1.

☞ Catatan 3.2
Jika r = 1, maka deret mungkin konvergen ataupun divergen, sehingga perlu uji yang lain.

Bukti. Jika limit di (3.7) ada dan r < 1 maka untuk ε > 0 ada K ∈ N sedemikian sehingga
|xn+1/xn| < r + ε untuk n > K. Berdasarkan sifat kepadatan bilangan real, diperoleh r1 ∈ R

sehingga r < r1 < 1. Sekarang pilih ε = r1 − r, didapatkan |xn+1/xn| < r1 untuk n > K.
Dengan menerapkan Teorema Uji Rasio (a), bisa disimpulkan deret

∑
xn konvergen. Lebih

lanjut jika limit di (3.7) ada dan r > 1 maka untuk ε > 0 ada K ∈ N sedemikian sehingga
|xn+1/xn| > r − ε untuk n > K. Berdasarkan sifat kepadatan bilangan real, diperoleh r1 ∈ R

sehingga 1 < r1 < r. Sekarang pilih ε = r − r1, didapatkan |xn+1/xn| > r1 > 1 untuk n > K.
Dengan menerapkan Teorema Uji Rasio (b), bisa disimpulkan deret

∑
xn divergen. ■

Contoh 3.3
Dengan menggunakan uji rasio, periksa kekonvergenan deret:

∑ 1
np
, untuk p > 0.

3.2.5 Uji Integral

Jika f di R[a, b] untuk setiap b > a dan jika lim
b→∞

∫ b

a
f(t) dt ada di R, maka integral tak wajar

didefinisikan oleh
∫ ∞

a
f(t) dt = lim

b→∞

∫ b

a
f(t) dt.

Teorema 3.8

Misalkan f adalah fungsi positif dan menurun pada {t : t ≥ 1}. Maka deret
∞∑

k=1
f(k)

konvergen jika dan hanya jika integral tak wajar∫ ∞

1
f(t) dt

ada. Lebih lanjut, jumlahan parsial sn =
n∑

k=1
f(k) dan jumlahan s =

∞∑
k=1

f(k) memenuhi

∫ ∞

n+1
f(t) dt ≤ s− sn ≤

∫ ∞

n
f(t) dt.
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Bukti. Karena f fungsi positif dan menurun pada interval [k − 1, k], diperoleh

f(k) ≤
∫ k

k−1
f(t) dt ≤ f(k − 1). (3.8)

Dengan menambahkan pertidaksamaan ini untuk k = 2, 3, · · · , n, didapatkan

sn − f(1) ≤
∫ n

1
f(t) dt ≤ sn−1,

yang menunjukkan bahwa kedua limit di bawah ini ada atau tidak ada:

lim
n→∞

sn, lim
n→∞

∫ n

1
f(t) dt.

Lebih lanjut, jika kedua limit di atas ada, maka dengan menambahkan pertidaksamaan (3.8)
untuk k = n+ 1, · · · ,m, diperoleh

sm − sn ≤
∫ m

n
f(t) dt ≤ sm−1 − sn−1

dan juga didapatkan
∫ m+1

n+1
f(t) dt ≤ sm − sn ≤

∫ m

n
f(t) dt. Ambil m → ∞, diperoleh∫ ∞

n+1
f(t) dt ≤ s− sn ≤

∫ ∞

n
f(t) dt. ■

Contoh 3.4
Dengan menggunakan uji integral, periksa kekonvergenan deret:

∑ 1
np
, untuk p > 0.

3.2.6 Uji Raabe

Teorema 3.9
isalX = (xn) barisan tak-nol di R.

1. Jika ada a > 1 danK ∈ N sedemikian sehingga∣∣∣∣xn+1
xn

∣∣∣∣ ≤ 1 − a

n
, untuk n ≥ K, (3.9)

maka deret
∑

xn konvergen mutlak.

2. Jika ada bilangan real a ≤ 1 danK ∈ N sedemikian sehingga∣∣∣∣xn+1
xn

∣∣∣∣ ≥ 1 − a

n
, untuk n ≥ K, (3.10)

maka deret
∑

xn tidak konvergen mutlak.

Institute Teknologi Sepuluh Nopember 62 Kistosil Fahim, Departemen Matematika



3. DERET TAK HINGGA 3.2. UJI KONVERGEN MUTLAK

Bukti. (a) Jika (3.9) terpenuhi, maka didapatkan

k|xk+1| ≤ (k − 1)|xk| − (a− 1)|xk|, untuk k ≥ K

yang ekivalen dengan

(k − 1)|xk| − k|xk+1| ≥ (a− 1)|xk| > 0, untuk k ≥ K. (3.11)

Tambahkan (3.11) untuk k = K, · · · , n, didapatkan

(K − 1)|xK | ≥ (K − 1)|xK | − n|xn+1| ≥ (a− 1)(|xK | + · · · + |xn|).

Ini menunjukkan bahwa jumlahan parsial dari deret
∑

|xn| terbpada dan didapatkan deret∑
xn konvergen mutlak.

(b) Jika (3.10) terpenuhi, maka karena a ≤ 1, diperoleh

n|xn+1| ≥ (n− a)|xn| ≥ (n− 1)|xn|, untuk n ≥ K.

Dengan induksi didapatkan n|xn+1| ≥ (K − 1)|xK | := c, untuk semua n ≥ K. Tetapi deret
harmonik

∑
1/n divergen, sehingga berdasarkan uji banding didapat deret

∑
|xn| divergen.

■

Akibat 3.3
MisalX = (xn) barisan tak-nol di R dan ditentukan

a := lim
(
n

(
1 −

∣∣∣∣xn+1
xn

∣∣∣∣)) (3.12)

ada di R. Didapatkan bahwa
∑

xn konvergen mutlak saat a > 1 dan tidak konvergen
mutlak saat a < 1.

☞ Catatan 3.3
ika a = 1, maka deret mungkin konvergen ataupun divergen, sehingga perlu uji yang lain.

Bukti. Jika limit di (3.12) ada dan a > 1 maka untuk ε > 0 ada K ∈ N sedemikian sehingga
n(1 − |xn+1/xn|) > a− ε untuk n > K. Berdasarkan sifat kepadatan bilangan real, diperoleh
r1 ∈ R sehingga 1 < a1 < a. Sekarang pilih ε = a − a1, didapatkan |xn+1/xn| < 1 − (a1/n).
Dengan menggunakan Teorema Uji Raabe (a), didapatkan

∑
xn konvergen. Selanjutnya, jika

a < 1 maka untuk ε > 0 ada K ∈ N sedemikian sehingga n(1 − |xn+1/xn|) < a + ε untuk
n > K. Berdasarkan sifat kepadatan bilangan real, diperoleh a1 ∈ R sehingga a < a1 <

1. Sekarang pilih ε = r1 − r, didapatkan |xn+1/xn| > 1 − (a1/n) untuk n > K. Dengan
menerapkan Teorema Uji Raabe (b), bisa disimpulkan deret

∑
xn divergen. ■
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Contoh 3.5
engan menggunakan uji Raabe, periksa kekonvergenan deret:

∑ 1
np
, untuk p > 0 dan

∑ n

n2 + 1 .

3.2.7 Latihan

1. Jika
∑

an merupakan deret konvergen mutlak, maka deret
∑

an sinnx konvergen mutlak
dan seragam.

2. Misalkan (cn) adalah barisan bilangan positif yang menurun. Jika
∑

cn sinnx konvergen
seragam, maka lim(ncn) = 0.

3. Tunjukkan bahwa jari-jari konvergensiR dari deret pangkat
∑

anx
n diberikan oleh lim(|an/an+1|)

saat limit ini ada. Berikan contoh deret pangkat yang limitnya tidak ada.

4. Jika 0 < p ≤ |an| ≤ q untuk semua n ∈ N, dapatkan radius konvergensi dari deret
∑

anx
n.

5. Misal f(x) =
∑

anx
n untuk |x| < R. Jika f(x) = f(−x) untuk semua |x| < R, tunjukkan

bahwa an = 0 untuk semua n yang ganjil.

3.3 Deret Fungsi

Definisi 3.4 Deret Fungsi dan Konvergensi

Jika (fn) barisan fungsi yang didefinisikan pada D ⊆ R dengan nilai di R, barisan jum-
lahan parsial sn dari deret tak-hingga

∑
fn yang didefinisikan untuk x ∈ D dengan

s1(x) := f1(x),

s2(x) := s1(x) + f2(x),
...

sn+1(x) := sn(x) + fn+1(x)
...

Jika barisan fungsi (sn) konvergen padaD ke fungsi f , maka barisan tak-hingga
∑

fn

dikatakan konvergen ke f pada D. Di sini, jika nilai limit dari deret
∑

fn ada, nilainya

dinotasikan sebagai
∞∑

n=1
fn.

Jika deret
∑

|fn(x)| konvergen untuk setiap x ∈ D , maka deret
∑

fn disebut konvergen
mutlalk pada D. Jika barisan (sn) dari jumlahan parsial konvergen seragam ke f pada D,
maka

∑
fn disebut konvergen seragam padaD.
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Teorema 3.10 Deret Fungsi Kontinu

Jika fungsi fn bernilai real dan kontinu pada D ⊆ R untuk setiap n ∈ N dan jika
∑

fn

konvergen seragam ke f padaD, maka f kontinu padaD.

Teorema 3.11 Deret Fungsi Terintegral Riemann

Diberikan fungsi fn bernilai real dan terintegral Riemann pada interval J := [a, b] untuk
n ∈ N. Jika deret

∑
fn konvergen seragam ke f pada J , maka f terintegral Riemann

dan ∫ b

a
f =

∫ b

a

∞∑
n=1

fn =
∞∑

n=1

∫ b

a
fn.

Teorema 3.12 Deret Fungsi Yang Dapat Diturunkan

Untuk masing-masing n ∈ N, misalkan fn fungsi bernilai real pada J := [a, b] yang mem-
punyai turunan f ′

n pada J . Jika deret
∑

fn konvergen paling sedikit di satu titik pada J
dan bahwa deret

∑
f ′

n konvergen seragam pada J , maka ada fungsi bernilai real f pada
J sedemikian sehingga

∑
fn konvergen seragam pada J ke f . Lebih lanjut, f mempun-

yai turunan pada J and f ′ =
∑

f ′
n.

3.3.1 Uji Konvergensi Seragam

Teorema 3.13 Kriteria Cauchy

Misal (fn) barisan fungsi bernilai real pada D ⊆ R. Deret
∑

fn konvergensi seragam
pada D jika dan hanya jika untuk setiap ε > 0 ada M(ε) ∈ N sedemikian sehingga jika
m > n ≥ M(ε), maka

|fn+1(x) + · · · + fm(x)| < ε, untuk semua x ∈ D.

Teorema 3.14 Uji-M Weierstrass

Misal (Mn) barisan bilangan real positif sedemikian sehingga |fn(x)| ≤ Mn untuk x ∈ D

and n ∈ N. Jika deret
∑

Mn konvergen, maka
∑

fn konvergen seragam padaD.

Bukti. Karena deret
∑

Mn konvergen dan berdasarkan kriteria Cauchy, didapatkan bahwa
adaM = M(ε) sedemikian sehingga jikam > n ≥ M , maka

Mn+1 + · · · +Mm < ε untuk x ∈ D.

Lebih lanjut, karena |fn(x)| ≤ Mn untuk x ∈ D and n ∈ N, diperoleh |fn+1(x) + · · · + fm(x)| <
ε untuk x ∈ D yang artinya

∑
fn konvergen seragam padaD. ■
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Definisi 3.5 Deret Pangkat Sekitar x = c

Deret fungsi bernilai real
∑

fn dikatakan deret pangkat di sekitar x = c jika fungsi fn

mempunyai bentuk
fn(x) = an(x− c)n,

dengan an dan c di R dan n = 0, 1, 2, · · · .

Definisi 3.6 Radius Konvergensi

Misal
∑

anx
n deret pangkat. Jika barisan |an|1/n terbatas, maka didefinisikan ρ :=

lim sup(|an|1/n). Sebaliknya jika barisan |an|1/n tidak terbatas maka didefinisikan ρ :=
+∞. Didefinisikan radius konvergensi dari

∑
anx

n diberikan oleh

R :=


0 if ρ = +∞,

1/ρ if 0 < ρ < +∞,

+∞ if ρ = 0.

Lebih lanjut interval konvergensi diberikan oleh (−R,R).

Definisi 3.7 Limit Superior

Misal X = (xn) barisan bilangan reall terbatas. Limit superior dari barisan (xn) adalah
infimum dari himpunan

V = {v ∈ R : ada paling banyak sejumlah hingga n ∈ N sehingga v < xn}.

Akibat 3.4
Misal X = (xn) barisan bilangan real tak-negatif terbatas. Limit superior dari barisan
(xn) adalah infimum dari himpunan

V = {v ∈ R : xn ≤ v untuk semua n yang cukup besar}

= {v ∈ R : adaM ∈ N sehingga xn ≤ v, untuk semua n ≥ M}.

Berikut fakta yang diperlukan:

✿ Jika v > lim sup(xn), maka adaM ∈ N sehingga xn ≤ v untuk semua n ≥ M .

✿ Jika w < lim sup(xn), maka adaM ∈ N sehingga xn ≥ w untuk semua n ≥ M .

Teorema 3.15 Teorema Cauchy-Hadamard

Jika R adalah radius konvergensi dari deret pangkat
∑

anx
n, maka deret tersebut kon-

vergen absolut jika |x| < R dan divergen jika |x| > R.
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Bukti:

Bukti. ✿ Kasus 0 < R < ∞

❀ Jika 0 < |x| < R, maka ada bilangan positif c < 1 sedemikian sehingga |x| < cR. Oleh
karena itu ρ < c/|x| dan berimplikasi bahwa adaM ∈ N sehingga |an|1/n ≤ c/|x|, untuk
semua n ≥ M . Ini ekivalen ke pernyataan bahwa

|anx
n| ≤ cn

untuk semua n ≥ M . Karena c < 1, maka deret
∑

cn konvergen. Dengan menerapkan
Uji Banding didapatkan deret

∑
anx

n konvergen mutlak.

❀ Jika |x| > R = 1/ρ, maka adaM ∈ N sehingga |an|1/n > 1/|x| untuk semuan ≥ M . Oleh
karena itu, |anx

n| > 1 untuk semua n ≥ M , sehingga deret
∑

anx
n tidak konvergen.

✿ Kasus R = 0 atau ρ = lim sup(|an|1/n) = +∞
Jika ρ = lim sup(|an|1/n) = +∞, maka lim sup(|an|1/n) > r untuk setiap r > 0. Oleh karena
itu untuk setiap r > 0 adaMr ∈ N sehingga |an|1/n ≥ r untuk semua n ≥ Mr. Untuk x ̸= 0,
ambil r = 1/|x| dan didapatkanM ∈ N sehingga |anx

n| ≥ 1 untuk semua n ≥ M . Karena∑
1 divergen didapat deret

∑
|anx

n| juga divergen untuk semua |x| > 0.

✿ Kasus R = +∞ atau ρ = lim sup(|an|1/n) = 0
Jika lim sup(|an|1/n) = 0, maka untuk setiap ε > 0 ada M ∈ N sehingga sup

n≥m
|an|1/n < ε

untuk semua m ≥ M . Ini artinya |am|1/m < ε untuk semua m ≥ M . Sekarang ambil
ε = c/|x| dengan x ̸= 0 dan 0 < c < 1, sehingga diperoleh |amx

m| < cm untuk semua
m ≥ M . Ini ekivalen ke pernyataan bahwa

|anx
n| ≤ cn

untuk semua n ≥ M . Karena c < 1, maka deret
∑

cn konvergen. Dengan menerapkan Uji
Banding didapatkan deret

∑
anx

n konvergen mutlak.
■

Teorema 3.16 Deret Pangkat Konvergen Seragam

Misal R adalah radius konvergensi dari deret pangkat
∑

anx
n. Jika K adalah interval

tertutup terbatas yang termuat pada interval konvergensi (−R,R), maka deret pangkat
konvergen seragam padaK.

Bukti. ✿ Kasus 0 < R < ∞
Karena K adalah interval tertutup terbatas pada interval (−R,R), didapatkan bahwa ada
a, b ∈ (−R,R) sehingga K = [a, b]. Lebih lanjut, juga didapatkan −R < −Q ≤ a dan
b ≤ Q < R dengan Q = max{|a|, |b|} ≤ a. Oleh karena itu, |x| ≤ Q untuk setiap x ∈ K
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dengan Q < R. Itu artinya, |x| ≤ cR untuk setiap x ∈ K dengan 0 < c = Q/R < 1. Dengan
demikian ρ ≤ c/|x| dan berimplikasi bahwa ada M ∈ N sehingga |an|1/n ≤ c/|x|, untuk
semua n ≥ M . Ini ekivalen ke pernyataan bahwa

|anx
n| ≤ cn

untuk semua n ≥ M . Karena 0 < c < 1, maka deret
∑

cn konvergen. Dengan menerapkan
uji-M Weierstrass didapatkan deret

∑
anx

n konvergen seragam.

✿ Kasus R = 0
Tidak ada yang perlu dibuktikan, karena tidak ada himpunan tertutup terbatasK.

✿ Kasus R = ∞
Mengikuti bukti Teorema Cauchy-Hadamard, didapatkan bahwa adaM ∈ N sehingga

|anx
n| ≤ cn, untuk n ≥ M,x ∈ K

dengan 0 < c < 1. Karena 0 < c < 1, maka deret
∑

cn konvergen. Dengan menerapkan
uji-M Weierstrass didapatkan deret

∑
anx

n konvergen seragam.
■

☞ Catatan 3.4
Perhatikan deret berikut: ∑

xn,
∑ 1

n
xn,

∑ 1
n2x

n.

Dapatkan jari-jari konvergensi dari masing-masing deret. Apakah masing-masing deret kon-
vergen di x = 1? Apakah masing-masing deret konvergen di x = −1?

Teorema 3.17 Integral Deret Pangkat

Deret pangkat selalu konvergen ke suatu fungsi kontinu pada intreval konvergensi. Deret
pangkat bisa diintegralkan suku demi suku pada interval tertutup dan terbatas yang ter-
muat dalam interval konvergensi.

Bukti. Jika |x0| < R, maka berdasarkan Teorema 3.3.1 (teorem konvergen seragam pada
deret pangkat) didapatkan bahwa

∑
anx

n konvergen seragam pada sebarang persekitaran
tertutup terbatas dari x0 yang termuat di dalam (−R,R). Kekontinuan di x0 didapatkan dari
Teorema 3.3 (teorema deret fungsi kontinu) dan integral suku demi suku didapatkan dari
Teorema 3.3 (teorema deret fungsi terintegral). ■

Teorema 3.18 Turunan Deret Pangkat

Deret pangkat bisa diturunkan suku demi suku pada interval konvergensi, yaitu

Jika f(x) =
∞∑

n=0
anx

n maka f ′(x) =
∞∑

n=1
nanx

n−1 untuk |x| < R.
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Kedua deret mempunya radius konvergensi yang sama.

Bukti. Karena lim(n1/n) = 1, barisan (|nan|1/n) terbatas jika dan hanya jika barisan (|an|1/n)
terbatas.Lebih lanjut, amati bahwa

lim sup(|nan|1/n) = lim sup(|an|1/n).

Oleh karena itu, dua deret
∑

|nan|1/n dan
∑

|an|1/n mempunyai jari-jari konvergensi yang
sama sehingga berdasarkan Teorema 3.3.1 (teorem konvergen seragam pada deret pangkat)
didapatkan bahwa kedua deret konvergen seragam pada semua interval tertutup dan ter-
batas yang termuat pada jari-jari konvergensi. Selanjutnya denganmenerapkan Teorema 3.3,
didapatkan

∑
(nanx

n−1) konvergen ke turunan dari f . ■

Perlu diperhatikan bahwa teorema tersebut tidak memberikan pernyataan tentang titik
akhir interval konvergensi. Jika suatu deret konvergen pada suatu titik akhir, maka deret yang
terdiferensiasi mungkin konvergen atau tidak konvergen pada titik tersebut. Misalnya, deret∑

xn/n2 konvergen di kedua titik ujung x = −1 dan x = 1. Namun, deret terdiferensiasi yang
diberikan oleh

∑
xn−1/n konvergen di x = −1 tetapi divergen di x = 1.

Teorema 3.19 Teorema Ketunggalan

Jika kedua deret
∑

anx
n dan

∑
bnx

n konvergen ke fungsi f pada interval (−r, r) dengan
r > 0, maka

an = bn untuk semua n ∈ N.

Bukti. an = bn didapat dari n!an = f (n)(0) = n!bn. ■

3.3.2 Latihan

1. Jika
∑

an merupakan deret konvergen mutlak, maka deret
∑

an sinnx konvergen mutlak
dan seragam.

2. Misalkan (cn) adalah barisan bilangan positif yang menurun. Jika
∑

cn sinnx konvergen
seragam, maka lim(ncn) = 0.

3. Tunjukkan bahwa jari-jari konvergensiR dari deret pangkat
∑

anx
n diberikan oleh lim(|an/an+1|)

saat limit ini ada. Berikan contoh deret pangkat yang limitnya tidak ada.

4. Jika 0 < p ≤ |an| ≤ q untuk semua n ∈ N, dapatkan radius konvergensi dari deret
∑

anx
n.

5. Misal f(x) =
∑

anx
n untuk |x| < R. Jika f(x) = f(−x) untuk semua |x| < R, tunjukkan

bahwa an = 0 untuk semua n yang ganjil.

Kistosil Fahim, Departemen Matematika 69 Institute Teknologi Sepuluh Nopember



3.3. DERET FUNGSI 3. DERET TAK HINGGA

Institute Teknologi Sepuluh Nopember 70 Kistosil Fahim, Departemen Matematika



Bab 4 Pengantar Topologi

4.1 Himpunan Terbuka, Tertutup, dan Kompak

Definisi 4.1 Persekitaran

Persekitaran dari titik x ∈ R adalah sebarang himpunan V yang memuat suatu
persekitaran-ε dari x untuk suatu ε > 0.

☞ Catatan 4.1
Untuk ε > 0, himpunan (x− ε, x+ ε) adalah persekitaran dari titik x.

Definisi 4.2 Himpunan Terbuka dan Himpunan Tertutup

(i) HimpunanG ⊂ R disebut terbuka diR jika untuk setiap x ∈ G ada persekitaran V dari
x sedemikan sehingga V ⊆ G. (ii) Himpunan F ⊂ R disebut tertutup diR jika F c = R\F
terbuka di R.

☞ Catatan 4.2
ntuk menunjukkan bahwa G ⊆ R terbuka, cukup dengan menunjukkan bahwa setiap titik
di G mempunyai persekitaran-ε yang termuat di G. Sedangkan, untuk menunjukkan bahwa
F ⊆ R tertutup, cukup dengan menunjukkan bahwa F c terbuka yakni setiap titik di F c

mempunyai persekitaran-ε yang termuat di F c.

Contoh 4.1
Periksa apakah masing-masing himpunan berikut ini tertutup, terbuka atau bukan ked-
uanya.

1. R

2. G := (0, 1)

3. I := (a, b)

4. J := [0, 1]

5. H = [0, 1)

6. ∅

Proposisi 4.1 Sifat Himpunan Terbuka

(a) Gabungan dari sebarang (berhingga atau tak-berhingga) koleksi himpunan terbuka di
R adalah terbuka. (b) Irisan dari koleksi berhingga himpunan terbuka diR adalah terbuka.

Bukti. Gunakan sifat himpunan dan definisi himpunan terbuka.

Kistosil Fahim, Departemen Matematika 71 Institut Teknologi Sepuluh Nopember



4.1. HIMPUNAN TERBUKA, TERTUTUP, DAN KOMPAK 4. PENGANTAR TOPOLOGI

Catatan: Perhatikan bahwa ∩∞
n=1(0, 1 + 1/n) = (0, 1]. ■

Proposisi 4.2 Sifat Himpunan Tertutup

(a) Irisan dari sebarang (berhingga atau tak-berhingga) koleksi himpunan tertutup di R
adalah tertutup. (b) Gabungan dari koleksi berhingga himpunan tertutup di R adalah ter-
tutup.

Bukti. Gunakan definisi himpunan tertutup dan kemudian gunakan sifat himpunan terbuka.
Catatan: Perhatikan bahwa ∪∞

n=1[0, 1 − 1/n] = [0, 1). ■

Teorema 4.1 Karakteristik Himpunan Tertutup

Jika F ⊆ R, maka argumen di bawah ini ekivalen:

(i) F tertutup di R;

(ii) JikaX = (xn) adalah barisan di F yang konvergen, maka lim(xn) berada di F .

Bukti. (i) =⇒ (ii) Misalkan X = (xn) adalah barisan elemen di F dan misalkan x := limX ;
akan ditunjukkan bahwa x ∈ F . Ini akan ditunjukkan secara kontradiksi, yaitu misalkan seba-
liknya x ∈ F c. Karena F c terbuka dan x ∈ F c, maka terdapat ε > 0 sehingga Vε(x) terdapat di
dalam F c. Karena x = lim(xn), maka terdapat bilangan asli K = K(ε) sehingga xK ∈ Vε(x).
Oleh karena itu haruslah xK ∈ F c; tetapi hal ini bertentangan dengan asumsi bahwa xn ∈ F

untuk semua n ∈ N. Oleh karena itu, kita menyimpulkan bahwa x ∈ F .
(ii) =⇒ (i) Akan ditunjukkan secara kontradiksi. Misalkan F tidak tertutup, sehinggaG := F c

tidak terbuka. Maka terdapat suatu titik y0 ∈ G sehingga untuk setiap ε > 0 ada y∗ ∈ Vε(y0)
tetapi y∗ ∈ Gc = F . Sekarang pilih ε = 1/n dengan n ∈ N, sehingga didapatkan yn ∈ Vε(y0)
tetapi yn ∈ Gc = F . Sekarang bisa diamati bahwa barisan (yn) yang dikonstruksi di atas
adalah barisan di F dan konvergen ke y0 ∈ F c. Hal ini kontradiksi dengan (ii). Sehingga
haruslah F tertutup. ■

Recall: Titik x adalah titik klaster dari himpunanF ⊆ A jika untuk setiap ε > 0 persekitaran
Vε(x) memuat titik di F selain x.

Teorema 4.2 Titik Klaster

Himpunan S tertutup di R jika dan hanya jika S memuat semua titik klasternya.

Bukti. Misalkan S adalah himpunan tertutup di R dan misalkan x adalah titik cluster dari S;
kita akan menunjukkan bahwa x ∈ S. Dengan kontradiksi misal x termasuk dalam himpunan
terbuka x ∈ Sc. Oleh karena itu terdapat ε > 0 sehingga Vε(x) ⊆ Sc. Akibatnya Vε(x) ∩S = ∅
yang bertentangan dengan asumsi bahwa x adalah titik cluster dari F .
Sebaliknya, misalkan S adalah himpunan bagian dari R yang berisi semua titik klasternya;
kita akan menunjukkan bahwa Sc terbuka. Karena jika y ∈ Sc, maka y bukan merupakan
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titik cluster dari S. Oleh karena itu terdapat ε > 0 sehingga Vε(y) tidak mengandung titik
S (kecuali mungkin y). Namun karena y ∈ Sc, maka Vε(y) ⊆ Sc . Karena y adalah elemen
sembarang dari F c, dapat disimpulkan bahwa untuk setiap titik di F c terdapat persekitaran-ε
yang seluruhnya terdapat di F c. Ini artinya F c terbuka di R dan oleh karena itu F tertutup di
R. ■

Teorema 4.3 Karakteristik Himpunan Terbuka

impunan S terbuka di R jika dan hanya jika S merupakan gabungan dari interval terbuka
di R yang saling asing dan banyaknya terhitung.

Bukti. Misalkan G ̸= 0 merupakan himpunan terbuka di R. Untuk setiap x ∈ G, misalkan
Ax := {a ∈ R : (a, x] ⊆ G} dan misalkan Bx := {b ∈ R : [x, b) ⊆ G}. Karena G terbuka, maka
Ax danBx tidak kosong. Jika himpunanAx terbatas di bawah, didefinisikan ax := inf Ax; jika
Ax tidak terbatas di bawah, kita tetapkan ax := −∞. Perhatikan bahwa dalam kedua kasus
ax /∈ G. Jika himpunan Bx terbatas di atas, maka ditetapkan bx := supBx; jika Bx tidak
terbatas di atas, ditetapkan bx = +∞. Perhatikan bahwa dalam kedua kasus bx /∈ G.

Sekarang definisikan Ix = (ax, bx). Bisa diamati bahwa Ix adalah interval terbuka yang
memuat x. Kita klaim bahwa Ix ⊆ G. Untuk melihat ini, misalkan y ∈ Ix dan ditentukan
y < x. Ini mengikuti dari definisi ax bahwa ada a′ ∈ Ax dengan a′ < y dan oleh karena itu
y ∈ (a′, x] ⊆ G. Demikian pula, jika y ∈ Ix dan ditentukan x < y, maka ada b′ ∈ Bx dengan
y < b′, maka y ∈ [x, b′) ⊆ G. Karena y ∈ Ix sebarang, kita mendapatkan Ix ⊆ G.

Karena x sebarang diG, dapat disimpulkan bahwa ∪x∈GIx ⊆ G. Sebaliknya, karena untuk
setiap G terdapat interval terbuka Ix dengan x ∈ Ix, didapatkan G ⊆ ∪x∈GIx. Oleh karena itu
kita simpulkan · G = ∪x∈GIx.

Sekarang klaim bahwa jika x, y ∈ G dan x ̸= y, maka Ix = Iy atau Ix ∩ Iy = ∅. Untuk
membuktikan ini misalkan z ∈ Ix ∩ Iy , dan diperoleh ax < z < by dan ay < z < bx. Akan
ditunjukkan bahwa ax = ay. Jika tidak, maka dari Sifat Trikotomi dapat disimpulkan bahwa
(i) ax < ay , atau (ii) ay < ax. Dalam kasus (i), didapatkan ay ∈ Ix = (ax, bx) ⊆ G, yang
bertentangan dengan fakta bahwa ay /∈ G. Demikian pula pada kasus (ii), didapatkan ax ∈
Iy = (ay, by) ⊆ G yang bertentangan dengan fakta bahwa ax /∈ G. Oleh karena itu didapatkan
ax = ay dan dengan argumen yang serupa menyiratkan bahwa bx = by. Oleh karena itu, bisa
disimpulkan bahwa jika Ix ∩ Iy /∈ ∅maka Ix = Iy.

Selanjutnya akan ditunjukkan bahwa kumpulan interval-interval berbeda {Ix : x ∈ G} ter-
hitung. Caranya, dihitung himpunan Q dari bilangan rasional Q = {r1, r2, · · · }. Berdasarkan
Teoremakepadatan, didapatkan bahwasetiap interval Ix memuat bilangan rasional; sekarang
pilih bilangan rasional di Ix yangmemiliki indeks n terkecil dalam pencacahanQ ini, yakni dip-
ilih rn(x) ∈ Q sehingga Ix = Irn(x) dan n(x) adalah indeks terkecil n sehingga Irn = Ix. Jadi
himpunan interval berbeda Ix, x ∈ G, dikorespondensikan dengan himpunan bagian dari N.
Oleh karena itu, himpunan interval berbeda ini dapat dihitung. ■
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Definisi 4.3 Himpunan Cantor

Himpunan Cantor F adalah irisan dari himpunan Fn, n ∈ N, dengan F0 = [0, 1] dan Fn,
n = 1, 2, · · · , adalah himpunan di R yang diperoleh secara iteratif dengan menghapus
sepertiga tengah terbuka dari masing-masing interval tertutup di Fn−1.

Karena F irisan dari himpunan tertutup, sehingga himpunan F tertutup. Selain itu F juga
mempunyai sifat lainnya, yaitu

1. Total panjang interval terbuka yang dihapus adalah 1.

2. Himpunan Cantor F tidak memuat interval terbuka tak kosong.

3. Himpunan Cantor F adalah himpunan tak terhitung.

Definisi 4.4 Cover Terbuka

Diberikan himpunan A ⊆ R. Cover terbuka dari A adalah koleksi G = {Gα :
Gα terbuka di R dan α ∈ I} sehingga

A ⊆ ∪α∈IGα.

Jika G′ subkoleksi dari G sehingga gabungan dari himpunan-himpunan di G′ juga memuat
A, maka G′ disebut cover bagian dari G. Lebih lanjut, jika anggota himpunan-himpunan G′

berhingga maka G′ disebut cover bagian berhingga.

☞ Catatan 4.3
Suatu himpunan mungkin mempunyai beberapa cover terbuka. Sebagai contoh, jika A :=
[1,∞), maka cover terbukanya adalah

G0 = {(0,∞)},

G1 = {(r − 1, r + 1) : r ∈ Q, r > 0},

G2 = {(n− 1, n+ 1) : n ∈ N},

G3 = {(0, n) : n ∈ N},

G4 = {(0, n) : n ∈ N, n ≥ 23}.

Definisi 4.5 Himpunan Kompak

Himpunan A ⊆ R dikatakan kompak jika untuk setiap cover terbuka dari Amempunyai
cover bagian berhingga. Dengan kata lain, untuk setiap cover terbuka G = {Gα : α ∈ I}
dari A, terdapat α1, α2, · · · , αk sehingga

A ⊆
k⋃

n=1
Gαn .
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Dari Definisi himpunan kompak di atas, himpunan H dikatakan tidak kompak jika terda-
pat cover terbuka G dari H tetapi gabungan berhingga dari himpunan-himpunan di G tidak
memuatH .

Dari contoh-contoh cover terbuka di atas, himpunan A = [0,∞) tidak kompak karena
G4 adalah cover terbuka dari A akan tetapi untuk setiap {n1, n2, · · · , nk} ⊆ N berlaku A ̸⊆

k⋃
i=1

(− 1
ni
, ni).

Contoh 4.2
Diketahui K = {x1, x2, · · · , xn} merupakan himpunan bagian berhingga dari R.
Diberikan sebarang cover terbuka G = {Gα : α ∈ I}. Untuk setiap xi, 1 ≤ i ≤ n

berlaku
x1 ∈ Gα1

x2 ∈ Gα2

...
...

xn ∈ Gαn .

Akibatnya gabungan dari himpunan-himpunan di koleksi {Gα1 , Gα2 , · · · , Gαn} memuat
K. Jadi,K kompak.

Teorema 4.4 Sifat Himpunan Kompak

JikaK kompak di R, makaK tertutup dan terbatas.

Bukti. Pertama-tama akan ditunjukkan bahwa K terbatas. Untuk setiap m ∈ N, misalkan
Hm := (−m,m). Karena setiap Hm terbuka dan karena K ⊆ ∪∞

m=1Hm = R, bisa dilihat
bahwa koleksi {Hm : m ∈ N} adalah cover terbuka dari K. Karena K kompak, koleksi ini
memiliki subcover yang terbatas, sehingga terdapatM ∈ N sehingga

K ⊆ ∪M
m=1Hm = HM = (−M,M).

Oleh karena itu K terbatas, karenaK termuat dalam interval berbatas (−M,M).
Sekarang akan ditunjukkan bahwaK tertutup, dengan menunjukkan bahwa komplemen-

nya Kc terbuka. Untuk melakukannya, misalkan u sebarang di Kc dan untuk setiap n ∈ N,
didefinisikan Gn := {y ∈ R : |y − u| > 1/n}. Bisa diperhatikan bahwa Gn terbuka untuk
n ∈ N dan R\{u} = ∪∞

n=1Gn.. Karena u /∈ K , didapatkan K ⊆ ∪∞
n=1Gn. Lebih lanjut, karena

K kompak, diperoleh bahwa adam ∈ N sedemikian sehingga

K ⊆ ∪m
n=1Gn = Gm.

Oleh karena ituK ∩ (u− 1/m, u+ 1/m) = ∅, sehingga interval (u− 1/m, u+ 1/m) = Kc. Tapi
karena u adalah titik sembarang diKc, bisa disimpulkan bahwaKc terbuka. ■
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Teorema 4.5 Heine-Borel

HimpunanK ⊆ R kompak jika dan hanya jika tertutup dan terbatas.

Bukti. Telah ditunjukkan pada Teorema 4.1 bahwa himpunan kompak di R tertutup dan ter-
batas. Untuk membuktikan kebalikannya, misalkan K tertutup dan terbatas, dan misalkan
G = {Gα} adalah cover terbuka dariK. Sekarang, akan ditunjukkan bahwaK terdapat dalam
gabunganbeberapa subkoleksi berhinggadariG. Buktinya dilakukan secara kontradiksi. Misal
diasumsikan bahwa:

K tidak terkandung dalam gabungan sejumlah himpunan berhingga di G. (4.1)

Dari hipotesis, K terbatas, sehingga terdapat r > 0 sehingga K ⊆ [−r, r]. Misalkan I1 :=
[−r, r] dan bagi I1 menjadi dua subinterval tertutup I ′

1 := [−r, 0] dan I ′′
1 := [0, r]. Setidaknya

salah satu dari dua himpunan bagian K ∩ I ′
1 dan K ∩ I ′′

1 tidak kosong dan mempunyai sifat
tidak termuat dalam gabungan sejumlah berhingga himpunan di G. [Sebab jika kedua him-
punanK ∩ I ′

1 danK ∩ I ′′
1 termuat dalam gabungan sejumlah berhingga himpunan di G , maka

K = (K ∩ I ′
1) ∪ (K ∩ I ′′

1 ) termuat dalam gabungan sejumlah berhingga himpunan di G , kon-
tradiksi dengan asumsi (4.1).] JikaK∩I ′

1 tidak termuat dalam gabungan sejumlah berhingga
himpunan di G , maka dimisalkan I2 = I ′

1; Selain itu jikaK ∩ I ′′
1 tidak termuat dalam gabungan

sejumlah berhingga himpunan di G maka dimisalkan I2 = I ′′
1 .

Sekarang bagi I2 menjadi dua subinterval tertutup I ′
2 dan I ′′

2 . JikaK∩I ′
2 tidak kosong dan

tidak termuat dalam gabungan sejumlah berhingga himpunan di G , maka dimisalkan I3 := I ′
2;

selain itu jika K ∩ I ′′
2 tidak kosong dan tidak termuat dalam gabungan sejumlah berhingga

himpunan di G , maka dimisalkan I3 := I ′′
2 .

Lanjutkan proses ini, diperoleh barisan interval bersarang (In). Berdasarkan Sifat Interval
Bersarang, terdapat sebuah titik z yang terdapat di semua In, n ∈ N. Karena setiap interval
In memuat sebanyak tak-berhingga titik diK , sehingga didapat titik z adalah titik klaster dari
K . Selain itu, karenaK diasumsikan tertutup, didapat z ∈ K. Oleh karena itu ada himpunan
Gλ di G dengan z ∈ Gλ. Karena Gλ terbuka, didaptakan bahwa ada ε > 0 sehingga

(z − ε, z + ε) ⊆ Gλ.

Sebaliknya, karena interval In diperoleh melalui pembagian dua dari I1 = [−r, r], didap-
atkan panjang In adalah r/2n−2. Oleh karena itu, jika n sangat besar sehingga r/2n−2 < ε

dan In ⊆ (z − ε, z + ε) ⊆ Gλ. Tetapi ini berarti bahwa jika n diambil sedemikian sehingga
r/2n−2 < ε, maka K ∩ In termuat dalam himpunan tunggal Gλ di G. Ini kontradiksi dengan
konstruksi dari In. Kontradiksi ini menunjukkan bahwa asumsi (4.1) tidak benar, sehingga
dapat disimpulkan bahwaK kompak. ■
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Teorema 4.6
HimpunanK ⊆ R kompak jika dan hanya jika setiap barisan diK mempunya sub-barisan
yang konvergen ke titik diK.

Bukti. Misalkan K kompak dan misalkan (xn) suatu barisan dengan xn ∈ K untuk semua
n ∈ N. Berdasarkan Teorema Heine-Borel, himpunan K terbatas sehingga barisan (xn) juga
terbatas; berdasarkan Teorema Bolzano-Weierstrass, terdapat subbarisan (xnk

) yang konver-
gen. KarenaK tertutup, didapat limit x := lim(xn() diK. Jadi setiap barisan diK mempunyai
subbarisan yang konvergen ke suatu titik diK.

Sebaliknya, akan ditunjukkan bahwa jikaK tidak tertutup atau tidak terbatas, maka pasti
ada barisan di K yang tidak mempunyai subbarisan yang konvergen ke titik di K. Pertama,
jikaK tidak tertutup, maka ada a titik cluster c dariK yang bukan diK. Karena c adalah titik
klaster dari K , maka terdapat barisan (xn) dengan xn ∈ K dan xn ̸= c untuk semua n ∈ N

sehingga lim(xn) = c. Kemudian setiap subbarisan (xn) juga konvergen ke c, dan karena
c ̸= K , diapatkan bahwa tidak ada subbarisan yang konvergen ke titik diK.

Kedua, jika K tidak terbatas, maka ada barisan (xn) di K sehingga |xn| > n untuk se-
mua n ∈ N. Sehingga, setiap subbarisan (xn) tidak berbatas, dan berimplikasi tidak ada
subbarisan yang konvergen ke titik diK. ■

4.1.1 Latihan

1. Tunjukkan bahwa himpunan N tertutup di R.

2. Tunjukkan bahwa A = {1/n : n ∈ N} bukan himpunan tertutup tetapi A ∪ {0} himpunan
tertutup.

3. Tunjukkan bahwa jikaG himpunan terbuka danF himpunan tertutup, makaG\F himpunan
terbuka dan F\G himpunan tertutup.

4. Tunjukkan bahwa himpunanG ⊆ R terbuka jika dan hanya jika tidakmemuat titik batasnya.

5. Tunjukkan bahwa himpunan F ⊆ R tertutup jika dan hanya jika ia memuat semua titik
batasnya.

6. Dapatkan cover terbuka dari interval (1, 2] yang tidak punya subcover yang berhingga.

7. Dapatkan cover terbuka dari N yang tidak punya subcover yang berhingga.

8. Dapatkan cover terbuka dari {1/n : n ∈ N} yang tidak punya subcover yang berhingga.

9. Buktikan menggunakan definisi kompak bahwa jika F adalah himpunan bagian dari him-
punan kompakK di R dan F tertutup, maka F kompak.

10. Buktikan menggunakan definisi kompak bahwa jika K1 dan K2 himpunan kompak di R,
makaK1 ∪K2 kompak.
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4.2 Ruang Metrik

Definisi 4.6 Ruang Metrik

Diberikan sebarang himpunan tak kosongX. Fungsi d : X × X → R yang memenuhi
sifat-sifat

M1. d(x, y) ≥ 0 untuk setiap x, y ∈ X (kepositifan)

M2. d(x, y) = 0 jika dan hanya jika x = y (definit positif)

M3. d(x, y) = d(y, x) untuk setiap x, y ∈ X (simetris)

M4. d(x, y) ≤ d(x, z) + d(y, z) untuk setiap x, y, z ∈ X (Ketaksamaan segitiga)

disebut metrik padaX. Pasangan (X, d) disebut dengan ruang metrik.

Contoh 4.3
✿ d(x, y) = |x− y| untuk x, y ∈ R.

✿ d(P1, P2) =
√

(x1 − x2)2 + (y2
1 + y2

2), untuk P1 = (x1, y1), P2 = (x2, y2) ∈ R2.

✿ d1(P1, P2) = |x1 − x2| + |y1 − y2|, untuk P1 = (x1, y1), P2 = (x2, y2) ∈ R2.

✿ d∞(P1, P2) = sup{|x1 − x2|, |y1 − y2|}, untuk P1 = (x1, y1), P2 = (x2, y2) ∈ R2.

✿ d∞(f, g) = sup{|f(x) − g(x)| : x ∈ [0, 1]}, untuk f dan g fungsi kontinu pada interval
[0, 1] ke R.

✿ d1(f, g) =
∫ 1

0
|f − g|, untuk f dan g fungsi kontinu pada interval [0, 1] ke R.

✿ Misal S himpunan tak-kosong.

d(s, t) :=

 0 jika s = t

1 jika s ̸= t.
, untuk s, t ∈ S.

Definisi 4.7 Persekitaran

Misal (S, d) ruang metrik. Untuk ε > 0, persekitaran-ε dari titik x0 di S adalah himpunan

Vε(x0) := {x ∈ S : d(x0, x) < ε}.

Persekitaran dari x0 adalah sebarang himpunan U yang memuat persekitaran-ε dari x0

untuk suatu ε > 0.

Definisi 4.8 Konvergensi

Misal (xn) barisan di ruangmetrik (S, d). Barisan (xn) dikatakan konvergen ke x ∈ S jika
untuk setiap ε > 0 adaK ∈ N sedemikian sehingga xn ∈ Vε(x) untuk semua n ≥ K.

Catatan: Karena xn ∈ Vε(x) jika dan hanya jika d(xn, x) < ε. Oleh karena itu, barisan
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(xn) dikatakan konvergen ke x jika dan hanya jika untuk setiap ε > 0 adaK ∈ N sedemikian
sehingga d(xn, x) < ε untuk semua n ≥ K. Dengan kata lain, barisan (xn) di (S, d) konvergen
ke x jika dan hanya jika barisan bilangan real (d(xn, x)) konvergen ke nol.

Contoh 4.4

Diberikan R2 dengan metrik d(P1, P2) =
√

(x1 − x2)2 + (y2
1 + y2

2), untuk P1 =
(x1, y1), P2 = (x2, y2) ∈ R2. Jika (Pn) = (xn, yn) untuk setiap n ∈ N, maka dapat
dinyatakan bahwa barisan (Pn) konvergen ke P = (x, y) terhadap metrik ini jika dan
hanya jika barisan bilangan real (xn) dan (yn) masing-masing konvergen ke x dan y.

Definisi 4.9 Barisan Cauchy

Misal (S, d) ruang metrik. Barisan (xn) di S dikatakan barisan Cauchy jika untuk setiap
ε > 0, adaH ∈ N sedemikian sehingga d(xn, xm) < ε untuk semua n,m ≥ H .

Definisi 4.10
Ruang metrik (S, d) dikatakan komplit jika semua barisan Cauchy di S konvergen ke
suatu titik di S.

Contoh 4.5
✿ Ruang C[0, 1] dengan metric d∞ adalah ruang yang lengkap.

✿ Ruang C[0, 1] dengan metric d1 adalah ruang yang tidak lengkap.

Definisi 4.11 Himpunan Terbuka dan Himpunan Tertutup

Misal (S, d) ruang metrik. Himpunan bagian G dari S dikatakan himpunan terbuka di
S jika untuk setiap titik x ∈ S ada persekitaran U dari x sedemikian sehingga U ⊆ G.
Himpunan bagian F dari S dikatakan himpunan tertutup di S jika F c = S\F himpunan
terbuka di S.

Definisi 4.12
Misal (S1, d1) dan (S2, d2) ruang metrik dan misal f : S1 → S2 adalah fungsi dari S1 ke
S2. Fungsi f dikatakan kontinu di titik c di S1 jika untuk setiap persikataran-ε dari f(c)
ada persekitaran-δ dari c sedemikian sehingga jika x ∈ Vδ(c) maka f(x) ∈ Vε(f(c)).

☞ Catatan 4.4
Formulasi ε− δ dari kekontinuan bisa dituliskan sebagai berikut: f : S1 → S2 kontinu di c
jika dan hanya jika untuk setiap ε > 0 ada δ > 0 sedemikian sehingga d1(x, c) < δ berakibat
d2(f(x), f(c)) < ε.
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Teorema 4.7 Kontinu Global

Jika (S1, d1) dan (S2, d2) ruang metrik, maka fungsi f : S1 → S2 kontinu pada S1 jika dan
hanya jika f−1(G) terbuka di S1 saat G terbuka di S2.

☞ Catatan 4.5
Ruang metrik (S, d) dikatakan kompak jika untuk setiap cover terbuka dari S mempunyai
berhingga subcover.

Teorema 4.8 Mempertahankan Kekompakan

Jika (S, d) ruang metrik yang kompak dan jika f : S → R kontinu, maka f(S) kompak di
R.

Definisi 4.13 Semimetrik

Semimetrik pada himpunan S adalah fungsi d : S × S → R yang memenuhi kondisi
(M1), (M3) dan (M4) dari definisi metrik dan

d(x, y) = 0 jika x = y.

Ruang semimetrik (S, d) adalah himpunan S bersama dengan semimetrik d pada S.

4.2.1 Latihan

1. Tunjukkan bahwa himpunan N tertutup di R.

2. Tunjukkan bahwa A = {1/n : n ∈ N} bukan himpunan tertutup tetapi A ∪ {0} himpunan
tertutup.

3. Tunjukkan bahwa jikaG himpunan terbuka danF himpunan tertutup, makaG\F himpunan
terbuka dan F\G himpunan tertutup.

4. Tunjukkan bahwa himpunanG ⊆ R terbuka jika dan hanya jika tidakmemuat titik batasnya.

5. Tunjukkan bahwa himpunan F ⊆ R tertutup jika dan hanya jika ia memuat semua titik
batasnya.

6. Dapatkan cover terbuka dari interval (1, 2] yang tidak punya subcover yang berhingga.

7. Dapatkan cover terbuka dari N yang tidak punya subcover yang berhingga.

8. Dapatkan cover terbuka dari {1/n : n ∈ N} yang tidak punya subcover yang berhingga.

9. Buktikan menggunakan definisi kompak bahwa jika F adalah himpunan bagian dari him-
punan kompakK di R dan F tertutup, maka F kompak.

10. Buktikan menggunakan definisi kompak bahwa jika K1 dan K2 himpunan kompak di R,
makaK1 ∪K2 kompak.
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