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¥ A Integral Riemann

I Integral Riemann: Definisi

Dalam baian ini akan diikuti prosedur yang umum digunakan dalam matakuliah kalkulus un-
tuk mendefinisikan integral Riemann yaitu merupakan limit dari jumlah Riemann ketika pan-
jang partisi terbesar mendekati nol. Karena diasumsikan bahwa pembaca telah familiar-
setidaknya secara informal-dengan integral dari mata kuliah kalkulus, disubbab ini tidak akan
diberikan motivasi tentang integral tersebut, atau membahas interpretasinya sebagai "luas
di bawah grafik," atau aplikasinya dalam fisika, teknik, ekonomi, dan sebagainya. Sebaliknya,
akan fokus pada aspek matematis murni dari integral tersebut.
Pertama-tama definisikan beberapa istilah dasar yang akan sering digunakan.

IMM W Partisi dan Partisi Bertanda

Jika I := [a,b] adalah interval tertutup terbatas di R, maka partisi dari / adalah himpunan
hingga terurut
P = (zo,x1,...,%n)

dari titik-titik dalam I sehingga
a=xg<x1 <<z =0b.

Titik-titik dalam P digunakan untuk membagi I = [a, b] menjadi subinterval-subinterval yang
tidak saling tumpang tindih:

5= [zo, 2], DLp:=[z1,20),..., In:=[zn_1,20]

Lebih lanjut, sering dinotasikan juga partisi P oleh P := {[z;_1, z;|}}_; dan norm (atau mesh)
dari P didefinisikan sebagai:

|P|| := max{x1 — x0,22 — T1,..., Ty — Tp_1}.

Jika sebuah titik x telah dipilih dari setiap subinterval I; = [z;_1, 2], untuk i = 1,2,...,n,
maka titik-titik tersebut disebut sebagai tag/tanda dari subinterval 7;. Himpunan pasangan
terurut
P o= {([zi1, @), 27)
dari subinterval-subinterval dan tanda yang sesuai disebut sebagai partisi bertanda dari 1.
Jika P adalah partisi bertanda yang diberikan di atas, maka jumlah Riemann suatu fungsi
f : [a,b] — R sesuai dengan P didefinisikan sebagai:

n

S(f,P) =Y flaf) (@i — zi1).

=1
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1.1. INTEGRAL RIEMANN: DEFINISI 1. INTEGRAL RIEMANN

Amati bahwa jika fungsi f positif pada [a, b], maka jumlah Riemann S(f, P) adalah jumlah
dari luas n persegi panjang yang lebarnya adalah x; — z;_; dan panjangnya adalah f(z).

i WA Definisi Integral Riemann

Sekarang didefinisikan integral Riemann dari suatu fungsi f pada interval [a, b].

Fungsi f : [a,b] — R dikatakan terintegral Riemann pada [, 0] jika terdapat suatu bi-
langan L € R sehingga untuk setiap ¢ > 0 terdapat 6. > 0 sedemikian sehingga jika P
adalah partisi bertanda pada [a, b] dengan | P|| < ¢., maka

’S(f;T?) = L’ <e.

Himpunan semua fungsi yang terintegral Riemann pada [q,b] dinotasikan sebagai
Rla, b].

Pada Teorema selanjutnya diberikan bahwa jika f € R[a, b], maka nilai L dapat diperoleh
secara tunggal dan disebut sebagai integral Riemann dari f pada [a, b]. Sebagai pengganti L,
biasanya ditulis

L:/:f atau /abf(x)dac.

Harus dipahami bahwa huruf apa pun selain = dapat digunakan dalam ekspresi terakhir, se-
lama tidak menimbulkan ambiguitas.

Teorema 1.1

Jika f € R|a, b], maka nilai integralnya tunggal.

Bukti. Misalkan L; dan L, adalah nilai dari integral Riemann dari fungsi f dan ambil sebarang
¢ > 0. Berdasarkan definisi dari integral Riemann didapatkan d.,,; > 0 sehingga jika P
adalah partisi bertanda dengan |1 || < 5, 51, maka

[S(F3P1) = L] < &/2
Juga terdapat d. 5 » > 0 sehingga jika P, adalah partisi bertanda dengan || P, || < 0z /2,2, Maka
[S(fP) = Lo| < 2/2.

Sekarang ambil § := min{d. 5,625} > 0 dan pilih partisi bertanda P dengan ||P|| < .
Karena || P|| < d./5,, dan ||P|| < 4. /20, maka

‘S(f;?j) — Ll‘ <e/2 dan ‘S(f77)> — Lg‘ <eg/2.
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1. INTEGRAL RIEMANN 1.1. INTEGRAL RIEMANN: DEFINISI

Sehingga dengan menggunakan Ketaksamaan Segitiga diperoleh bahwa
L1 — Lo| = [L1 = S(fiP) + S(f;B) — Lo| < | L1 = S(/P)|+[S(5P) — Lo| < e/2+e/2 =€,

Karena ¢ > 0 sebarang, maka diperoleh L; = L.

Jika g dapat diintegralkan secara Riemann pada [a, b] dan jika f(z) = g(x) kecuali pada
sejumlah titik berhingga di [a, b], maka f juga dapat diintegralkan secara Riemann dan

[r-fo

Bukti. Pada bagian ini akan dibuktikan bahwa jika n bilangan asli dan ay, as, - - - , a,, adalah
n titik berbeda pada [, b] sehingga

#g(m% xE{al,a2,~-- 7an}
=g(x), x¢{a, a2, an}

[r=[s

Metode pembuktian yang digunakan adalah induksi matematika. Sekarang mulai dengan
validasi untuk n = 1, yakni dimisalkan f(z) = g(z) kecuali untuk = # a,. Untuk setiap par-
tisi bertanda P := {([z;_1, x], =)}, suku-suku dalam kedua jumlah S(f;P) dan S(g; P)
sama kecuali pada paling banyak dua titik. Sekarang perhatikan beberapa kondisi berikut
yang mungkin terjadi:

()

maka

Kondisi 1 Tidak ada j € {1,2,--- ,n} sehingga z; = a;
Pada kondisi ini didaptakan

n

> (f@)) = g@))) (@i — wio)| =

i=1

IS(f;P) — S(g:P)| =

Kondisi 2 Ada tepat satu j € {1,2,--- ,n} sehingga z; = a;
Pada kondisi ini didaptakan

n

D (f@i) = g(@a) (@i —zi1)| = |(f(ar) — g(ar))(zj — zj1)
1=1

f(a1) = gla1)| |z — xj-1] < [f(a1) — glar)| | P]I.

IS(f;P) = S(g:P)| =

IN

Terapkan ketaksamaan segitiga diperoleh
S(f;P) = S(g:P)| < (If (@) + lg(a) D IP]-
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1.1. INTEGRAL RIEMANN: DEFINISI 1. INTEGRAL RIEMANN

Kondisi 3 Ada tepat satu j € {1,2,---,n} sehingga z; = zj,; = c ini terjadi pada saat
a1 adalah titik ujung pada subinterval yakni a; = z; untuk suatu ; > 1 dan pilih tanda
a1 =T = Tjy
Pada kondisi ini didaptakan

[S(f;P) —S(g:P)| = zn:(f(ﬂff) —g(x}))(zi — xi1)
=1
[(f(a1) — g(a1))(z; — zj-1) + (f(a1) — glar)) (w41 — z;5)]

< |f(ar) — gla)| |z — zj—1] + [ f(a1) — g(a1)| |zj4+1 — 2]

< 2|f(a1) = g(a)]||P].

Terapkan ketaksamaan segitiga diperoleh
S(f;P) = S(@P) < 2(1f(a1)] +lg(ar)]) | P
Berdasarkan ketiga kondisi di atas didapatkan
S(£:P) = S(@P) < 2(1f(a1)] + lg(ar)]) [P

Sekarang, dimisalkan L = / g dan ambil sebarang ¢ > 0, kemudian pilih 6; > 0 sehingga

61 < g/(4(|f(a1)| + |g(a1)])) dan 5 > 0 sehingga jika |P|| < d maka |S(g;P) — L| < £/2.
Selanjutnya, ambil § = min(d;, 2) dan P yang memenuhi | P| < ; ||P|| < 6, didapatkan

IS(f;P)—L| < [S(f;P)—S(g:P)| +[S(g; P) — L|
< 2(If(a)] + lgla)) 1Pl + &/2 < 2(| f(a1)| + |g(a1)]) 61 + /2
= ¢/24+¢/2=¢.

Dengan demikian, fungsi f dapat diintegralkan dengan nilaiintegral L. Selanjutnya asumsikan
bahwa pernyataan benar untuk n = k dan perlu memvalidasi bahwa jika

f(l‘) #g(‘r)’ ‘Te{alva%"' 7a/€+1}

= 9(517)7 z ¢ {01,a2, T 7ak+1}

b b
maka/ f:/ g. Pertama didefinisikan

N f(x), xec{a,az, - ax}
g(z) =
g(m)a ZU¢{CL1,CL2,"‘ aak}}

dan berdasarkan asumsi induksi matematika yaitu pernyataan benar untuk n = k, diperoleh

b b
/ Jg = / g. Selanjutnya amati bahwa f(z) = g(z) kecuali untuk = # ax.1, yang artinya
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1. INTEGRAL RIEMANN

1.1. INTEGRAL RIEMANN: DEFINISI

b b b
berdasarkan hasil sebelumnya didapatkan/ g = / f. Sehingga bisa disimpulkan/ f=

b
fo
a

Jika hanya digunakan definisi, untuk menunjukkan bahwa suatu fungsi f dapat diinte-
gralkan secara Riemann, haruslah (i) diketahui (atau menebak dengan benar) nilai L dari in-
tegral, dan (ii) dikonstruksi § yang bergantung pada sebarang ¢ > 0. Penentuan L kadang
dilakukan dengan menghitung jumlah Riemann dan menebak nilai L. Penentuan § biasanya

sulit dilakukan.

Dalam praktiknya, biasanya untuk menunjukkan bahwa f € R[a, b] dengan menggunakan

beberapa teorema yang akan diberikan nanti.

Contoh 1.1

c(b—a)..

n

=1

maka

/abf—c(b—a).

b
Buktikan bahwa setiap fungsi konstan f pada [a, b] termasuk dalam R|a, b] dan / f=

Penyelesaian: Misalkan f(z) = c untuk semua z € [a,b]. Jika P := {([z;_1,zi],2})}",
adalah suatu partisi bertanda pada [a, b], maka jelas bahwa

S(f;P) = z:c(xZ —xzi—1) = c(b—a).
Dengan demikian, untuk sebarang ¢ > 0, dapat dipilih 6 = 1 sehingga jika ||P|| < §,

IS(f;P) — (k(b—a))| =0 <.

Karena ¢ sebarang, bisa disimpulkan bahwa f € R|a, b] dan

Contoh 1.2

Misalkan g : [0,4] — R didefinisikan oleh

Buktikan bahwa ¢g € R0, 4] dan

3
L::/ g = 15.
0

Kistosil Fahim, Departemen Matematika

Penyelesaian: Pertama, misalkan P := {([z;_1, =], =)}, adalah partisi bertanda dari
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1.1. INTEGRAL RIEMANN: DEFINISI 1. INTEGRAL RIEMANN

[0, 4] dengan norm < ¢; akan ditunjukkan cara menentukan 6 = §(¢) yang bergantung
pada ¢ agar |S(g; P) — 15| < e. Pada contoh ini perlu dilihat untuk beberapa kondisi:

Kondisi 1: Ada m sehingga z,, = 1
Pada kondisi ini bisa langsung dihitung

n

23 — 1) Z A(z; — xi—1) = 3(Tm — x0) + 4(xp, — ) = 15.

i=m-+1

Dengan demikian, diperoleh
S(f;P) = (k(b—a))| = 0.

Kondisi 2: Adam sehingga z,, <1 <z, danz;, ;<1
Perhatikan bahwa

15 = 3(1-0)+4(4—1)

= 3(1 —&m+Tm — Tm—1+Tm—1— Tm—2+ - +T1 — Zg)

+4(xp — Tp—1+ Tp—1 — Tp—2+ -+ Tmt+2 — Tmt1 + Tyl — 1)
= Sl = =F S0 = 1 == A 1 = g —F o AR = g

+4(zp — Tp—1+ Tn-1 — Tpn-2+ -+ Ttz — :cm+1) + 4(zmt1 — 1)

= 3(1_$m)+4($m+1_1)+23( — Ti— l + Z — XTj— 1
i=1 i=m+2

Sehingga didapatkan
S(f;P) — 15]

m
= 3 i — Ti—1) + 3(Tme1 — Tm) + Z A(x; — xi-1)
1 i=m-+2

m
[3 1— &) + 4(@me1 — 1) + D) 3(mi — 1) + Z 4(x; — i 1”

=1 i=m-+2
= [3(@mt1 — =301 = 2m) — 4@me1 — 1)

- |f<xm+1 - 1>| <

Kondisi 3: Ada m sehingga z,, <1 < xp,11danz;, | > 1

|S(f;P) — 15|
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1. INTEGRAL RIEMANN

:L

M§

3(x; —56114-24

i=m+1

I
f

—

1=

- [3(1 —Zm) +4(xme1 — 1) + i B
=1

= |(1 = 2m)| < 6.

IS(f;P) — 15| < 6.

Sekarang pilih § < ¢ didapatkan

Dengan demikian, ditemukan bahwa |S(g;

sebagaimana yang diinginkan.

i — Lj— 1]—15

m
= [Z 3 - Ti— 1 + 4(xm+1 - ‘Tm) +

[4(zms1 — 2m) = 3(1 — zm) — H@mi1 — 1)

Dengan melihat hasil pada Kondisi 1, Kondisi 2 dan Kondisi 3 di atas diperoleh

IS(f; P) — 15| < e.

P) — 15| < ¢ ketika |P|| < & dengan § < e.
4

Karena ¢ > ( sebarang, ini telah membuktikan bahwa g € R |0, 4], dan bahwa/ g =15,
0

1.1. INTEGRAL RIEMANN: DEFINISI

_le+z4

1=m-+2

i — Lj— 1]‘

Contoh 1.3

Misalkan h(z)

1
i
0 2

Penyelesaian: Misalkan P := {([z;_1,z], z})}"

= x untuk = € |0,

|S(h; P) — %] < e. Pertama, perhatikan bahwa

1

s
Il
—

NN

-

<
Il
i

Kistosil Fahim, Departemen Matematika

1]; akan ditunjukkan bahwa . € R[0,1] dengan

1 adalah partisi bertanda dari [0, 1] den-
gan norm < ¢; akan ditunjukkan cara menentukan § = §(¢) yang bergantung pada ¢ agar

1
3 = (-0
1
= 5(95721—53721—1+$2—1—$?L—2+"'+9E%—3«"3)
1 & 9
2
= 55:(%’—%—1)
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1.1. INTEGRAL RIEMANN: DEFINISI 1. INTEGRAL RIEMANN

Z h(qi)(zi — zi-1)
=1
1
endan q; .= —(z; + Tj—1) € |Ti—1,%; untuk: =1,2,--- , . Seningga diperole
d 5 k Sehi di leh

S(tiP) ~ 5] = |3 A~ zi1) = Y hlas) (e — 7i1)

i=1 =1

< znz —(L‘i_1)§52(xi—$i_1):(5'1: .

Dengan demikian, dengan memilih § := ¢, maka dapat ditelusuri kembali argumen untuk
1 1
menyimpulkan bahwa h € R0, 1] dan / h = / rdr = !
J0O 0

5"

IR Sifat-sifat Integral

Kesulitan dalam menentukan nilai integral dan § menunjukkan bahwa akan sangat berguna
untuk memiliki beberapa teorema umum. Hasil pertama dalam arah ini memungkinkan mem-
bentuk kombinasi aljabar tertentu dari fungsi-fungsi yang dapat diintegralkan.

Misalkan f dan g adalah fungsi dalam R|a,b]. Diperoleh

(a) Jika k € R, fungsi k f termasuk dalam R|[a, ] dan

/abkf:k:/abf.

(b) Fungsi f + g termasuk dalam R [a, b] dan

/ (f+9) = / f+ / 9-
(c) Jika f(x) < g(x) untuk semua z € [a,b], maka

/abe/abg-

Bukti. Jika P = {([zi—1,:],t;)};, adalah partisi bertanda dari [a, ], maka mudah untuk
menunjukkan bahwa

S(kf;P)=kS(f;P), S(f+gP)=S(f;P)+S(g;P),
S(f;P) < S(g;P).
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1. INTEGRAL RIEMANN 1.1. INTEGRAL RIEMANN: DEFINISI

Diserahkan kepada pembaca untuk menunjukkan bahwa pernyataan (a) mengikuti dari
persamaan pertama. Sebagai contoh, berikut diberikan pembuktian bagian (b) dan (c) secara
lengkap.

Diberikan ¢ > 0, akan digunakan argumen dalam pembuktian Teorema Keunikan 1.1 untuk
membangun sebuah bilangan §. , > 0 sehingga jika P adalah partisi bertanda dengan || P|| <
d. 2, maka kedua kondisi berikut berlaku:

‘S(f;f’) [

Untuk membuktikan (b), perhatikan bahwa

‘(f+g, (/ f+/ )

) b
<e/2, IS(Q;P)—/ gl <e/2. (1.1)

= ’S(fP )+ Slg; P / /

S(f:P) - /abf

< g/24¢/2=c¢.

IN

+[S(g;P) — /abg

Karena ¢ > 0 bersifat sembarang, bisa disimpulkan bahwa f + ¢ € R]a, b] dan integralnya
merupakan jumlah dari integral f dan g.
Untuk membuktikan (c), perhatikan bahwa penerapan ketaksamaan (1.1) memberikan

b ) ] b
/af—e/2<5(f;77), S(g;P)</ag—|—5/2.

Jika digunakan fakta bahwa S(f;P) < S(g; P), maka diperoleh

/abfé/angra

Namun, karena ¢ > 0 bersifat sembarang, bisa simpulkan bahwa

/abfé/abg

I Teorema Keterbatasan

Sekarang akan ditunjukkan bahwa fungsi yang tidak terbatas tidak dapat diintegralkan Rie-
mann.

Teorema 1.4
Jika f € R[a,b], maka f terbatas pada [a, b].
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1.1. INTEGRAL RIEMANN: DEFINISI 1. INTEGRAL RIEMANN

Bukti. Misalkan f adalah fungsi yang tidak terbatas dalam R [a, b] dengan integral L. Maka
ada ¢ > 0 sehingga jika P adalah partisi bertanda dari [a, b] dengan ||P|| < &, maka berlaku

yang menyiratkan bahwa
IS(f;P)| < |L| + 1. (1.2)

Sekarang, misalkan Q = {[z;_1, z;]}/", adalah partisi dari [a, b] dengan || Q|| < ¢. Karena |f]
tidak terbatas pada [a, b], maka ada setidaknya satu subinterval dalam Q, misalnya [zx_1, 2],
di mana |f| tidak terbatas—karena jika | | terbatas pada setiap subinterval [x;_;, z;] oleh M,
maka f terbatas pada [a, b] oleh max{M;,..., M,}.

Sekarang pilih tanda untuk Q yang akan memberikan kontradiksi terhadap (1.2). Beri
tanda Q dengan ¢; := x; untuk i # k dan pilih ¢, € [z_1, z)] sehingga

|f(tr)(me — zp1)| > [L]+ 14 D ft) (@i — 1)

itk

Dari Ketidaksamaan Segitiga (dalam bentuk |A + B| > |A| — | B]), diperoleh

S(f; Q) > [f(tr) (wx — xn—1)| — D f(t:)(wi — xi1)

itk

> |L]+ 1,

yang bertentangan dengan (*). [

Bagian ini ditutup dengan sebuah contoh fungsi yang tidak kontinu di setiap bilangan ra-
sional dan tidak monoton, tetapi tetap dapat diintegralkan dalam pengertian Riemann.

MM Latihan

1. Jika I := [0, 4], hitung norm dari partisi berikut:
(@) P1:=(0,1,2,4),
(b) Py :=(0,2,3,4),
(c) P3:=(0,1,1.5,2,3,4,4),
(d) Py :=(0.5,2.5,3.5,4).
2. Jika f(z) := z* untuk = € [0,4], hitung jumlah Riemann berikut, di mana P; memiliki titik
partisi seperti pada Latihan 1, dan tanda dipilih sebagaimana diberikan sebagai berikut:
(a) P, dengan tanda di titik kiri subinterval.
(b) 1 dengan tanda di titik kanan subinterval.
(c) P, dengan tanda di titik kiri subinterval.
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(d) P dengan tanda di titik kanan subinterval.
3.(a) Misalkan f(z) = 2jika0 < 2 < 1dan f(z) = 1jikal < = < 2. Tunjukkan bahwa
f € R0, 2] dan hitung integralnya.

(b) Misalkan h(z) = 2jika0 < = < 1, h(1) = 3,dan h(x) = 1jikal < = < 2. Tunjukkan
bahwa i € R0, 2] dan hitung integralnya.

4. Gunakan Induksi Matematika dan Teorema 1.3 untuk menunjukkan bahwajika f1, ..., f, €

Rla,bl dan kq,. .., k, € R, maka kombinasi linear f = Z k; f; termasuk R|[a, b] dan
i=1

b n b
[r=n[
a i=1 a
5.Jika f € Rla,b] dan |f(z)| < M untuk semua = € [a, b], tunjukkan bahwa
b
I
6. Jika f € R|a,b] dan (P,) adalah urutan partisi bertanda dari [a, b] sehingga || P,| — 0,
buktikan bahwa

< M(b—a).

b
[ = i stp)
7. Misalkan f terbatas pada [a,b] dan ada dua urutan partisi bertanda dari [a,b] sehingga
| Pn]l — 0dan ||Q,|| — 0, tetapi

Tim S(f;Pn) # lim S(f; Qn)-
Tunjukkan bahwa f ¢ R]a,b].

8. Misalkan ¢ < d adalah titik-titik dalam [a, b]. Jika ¢ : [a,b] — R memenuhi ¢(z) = a > 0
untuk = € [e,d] dan ¢(x) = 0 di tempat lain dalam [a, b], buktikan bahwa ¢ € R[a,b] dan
bahwa

/abgpza(d—c).

(Petunjuk: Diberikan e > 0, ambil § = /4« dan tunjukkan bahwajika ||| < 6, maka dimiliki

ald—c—256) <S(p;P) < a(d—c+296).
9. Misalkan 0 < a < b, Q(x) := 2* untuk z € [a,b],dan P = {[z;_1, 2;]}"_, menjadi partisi dari

[a, b]. Untuk setiap i, biarkan ¢; menjadi akar kuadrat positif dari

% (1‘12,1 + CCZQ + mi_lxi) .

(a) Tunjukkan bahwa ¢; memenuhi 0 < z; ; < ¢; < x;.

(b) Tunjukkan bahwa Q(¢;)(x; — x;—_1) = é (:rf’ — xf_l) .
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(c) Jika Q adalah partisi bertanda dengan subinterval yang sama seperti P dan tanda ¢;,
tunjukkan bahwa

. 1
S(@:9) = 5(° — a?).
(d) Tunjukkan bahwa @ € R[a, b] dan

b 1
/ 2% de = §(b3 —a®).

10. Jika f € R[a,b] dan ¢ € R, didefinisikan g pada [a+¢, b+c| dengan g(y) = f(y—c). Buktikan
bahwa g € R[a + ¢, b + ¢] dan bahwa
b+c b
Juoo= 17
a+c a

Il Fungsi Terintegral Riemann

Pada subbab ini dimulai dengan pembuktian Kriteria Cauchy. Selanjutnya, dibuktikan Teo-
rema Squeeze, yang akan digunakan untuk menetapkan keterintegralan Riemann dari beber-
apa kelas fungsi (fungsi tangga, fungsi kontinu, dan fungsi monoton). Terakhir, dibuktikan
Teorema jumlahan.

Pada subbab sebelumnya dijelaskan bahwa untuk menggunakan definisi integral memer-
lukan pengetahuan tentang nilai integral. Kriteria Cauchy di bawah ini menghilangkan ke-
butuhan ini, tetapi dengan konsekuensi bahwa harus dipertimbangkan dua jumlah Riemann,
bukan hanya satu.

Kriteria Cauchy

Fungsi f : [a,b] — R anggota dari R|a,b] jika dan hanya jika untuk setiap ¢ > 0 ada
n. > 0 sehingga jika P dan O merupakan partisi bertanda atas [a, b] dengan |P| < 7.
dan || Q|| < 1., maka

IS(f;P) —S(f; Q) <e.

Bukti. (=) Misalkan f € R[a,b] dengan nilai integral L. Berdasarkan definisi integral, un-
tuk sebarang ¢ > 0 ada 7. := d./» > 0 sedemikian sehingga jika P, Q adalah partisi
bertanda dengan ||| < 7. dan || Q|| < 7., maka

IS(f;P) = L| <e/2 dan |S(f;Q)—L|<¢e/2.
Oleh karena itu, didapat

S(f;P) = S(f; Q)| < [S(f;P) — LI+ |L —S(f;Q)| <e/2+¢/2=e.

(«<) Misalkan untuk setiap ¢ > 0 ada 7. > 0 sehingga jika P dan Q merupakan partisi
bertanda atas [a,b] dengan ||P|| < 7. dan ||Q|| < 7., maka |S(f;P) — S(f; Q)| < e.
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Pilih ¢ = 1/n dengan n € N didapatkan bilangan positif 7, ;,, sehingga jika dua partisi
bertanda 7 dan © memenuhi |P|| < 1, ,,, dan || Q|| < n;,, maka |S(f; P) — S(f; Q)| <
1/n.

Selanjutnya didefinisikan barisan bilangan (4,,) dengan 6,, := min{n1,11/2, ..., 71 /n}-
Perhatikan bahwa §,, > §,.1 untuk n € N dan jika dua partisi bertanda P dan Q
memenuhi | P|| < 6, dan Q|| < &, maka ||P| < n;,, dan ||Q|| < n,,, sehingga diper-
oleh |S(f:P) — S(f: Q)| < 1/n.

Sekarang misalkan untuk setiap n € N, diberikan partisi bertanda ?,, dengan || P,,|| < 6,..
Jelas, jika m > n maka ||P,,|| < 6,, < 6, sehingga keduanya P,, dan P,, memiliki norm
< ¢, dan diperoleh

IS(f;Pm) — S(f;Pn)| < 1/n untuk m > n. (1.3)

Akibatnya, barisan (S(f;P,,))_, adalah barisan Cauchy dalam R. Oleh karena itu

m=1

barisan ini konvergen di R dan bisa dimisalkan A adalah nilai konvergensinya yaitu
A= T%i_{nooS(f;Pm).
Kemudian ambil limit pada (1.3) atas m, diperoleh

IS(f;Pn) — Al <1/n untuk semua n € N.

Untuk melihat bahwa A adalah integral Riemann dari f, ambil sebarang ¢ > 0, dan pilih
K € N sehingga K > 2/¢. Jika O adalah partisi bertanda dengan ||Q|| < dx, maka

S(f;Q) — Al < IS(f;Q) = S(fs Pr)| +[S(f: Pr) — Al < I/K + 1/K <.

Karena ¢ > 0 diambil sebarang, maka f € R[a, b] dengan integral A.

Contoh 1.4

Misalkan g : [0, 3] — R adalah fungsi yang didefinisikan pada Contoh 1.2 yang diberikan
oleh

Buktikan bahwa g € R[a, b].

Penyelesaian: Pada Contoh 1.2, bisa dilihat bahwa jika 7 adalah partisi bertanda dari
0, 4] dengan norm ||| < 1, maka

15-n<S8(g;P) <15+0.
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Dengan demikian, jika O adalah partisi bertanda lain dengan ||Q|| < 7, maka

15 -1 <8(9;:Q) <15+
Jika kedua pertidaksamaan dikurangkan, diperoleh
S(g; P) = S(g; Q)| < 21

Untuk membuat hasil akhir ini < ¢, pilih < /2. Sehingga berdasarkan Kriteria Cauchy
diperoleh bahwa g € R0, 4].

Kriteria Cauchy dapat digunakan untuk menunjukkan bahwa fungsi f : [a,b] — R tidak
dapat diintegralkan menurut Riemann. Untuk membuktikannya, perlu ditunjukkan bahwa: Ada
o > 0 sehingga untuk setiap n > 0, terdapat partisi bertanda P dan Q dengan ||P|| < 7 dan
|Q|| < n sehingga

S(f;P) = S(f; Q)| = eo.

Contoh 1.5

Misalkan g : [0, 1] — R adalah fungsi yang didefinisikan oleh

1, x bilangan rasional,
g9(z) :=
0. x bilangan irasional.
Buktikan bahwa g ¢ R[a, b].
Penyelesaian: Ambil ¢( := % dan ambil sebarang > 0 dan P dan Q adalah dua partisi

bertanda dengan ||P|,[|Q| < n. Jika semua tanda dari 7 adalah bilangan rasional
maka S(f;P) = 1, sedangkan jika semua tanda dari Q adalah bilangan irasional maka
S(f; Q) = 0. Sehingga didapatkan

IS(f;P) — S(f; Q) = o

dan oleh karenaitu g ¢ R|a, b].

I AN Teorema Apit

Pada definisi integral Riemann, ada dua jenis kesulitan. Pertama, untuk setiap partisi, terda-
pat pilihan tanda yang tak terhingga banyaknya. Kedua, terdapat partisi-partisi tak terhingga
yang memiliki norm kurang dari jumlah tertentu. Kita telah mengalami tantangan ini dalam
contoh-contoh dan bukti-bukti teorema.

Sekarang, pada subbab ini diberikan sifat pentinguntuk membuktikan keterintegralan Rie-

Institute Teknologi Sepuluh Nopember Kistosil Fahim, Departemen Matematika



1. INTEGRAL RIEMANN 1.2. FUNGSI TERINTEGRAL RIEMANN

mann yang disebut Teorema Apit, yang akan memberikan sedikit bantuan dari kesulitan terse-
but. Teorema ini menyatakan bahwa jika suatu fungsi dapat dibatasi diantara dua fungsiyang
diketahui dapat diintegralkan menurut Riemann, maka dapat disimpulkan bahwa fungsi terse-
but juga dapat diintegralkan menurut Riemann. Kondisi-kondisi yang tepat diberikan dalam
pernyataan teorema ini.

Teorema Apit

Misalkan f : [a,b] — R. Fungsi f terintegral Riemann pada [a, b] jika dan hanya jika untuk
setiap € > 0, terdapat fungsi «.. dan w. dalam R]a, b] sehingga

as(z) < f(z) < w:(x) untuk setiap = € [a, b],

dan

/ab(ws —a;) <e.

Bukti. (=) Ambil a. = w. = f untuk setiap ¢ > 0.
(<) Misalkan € > 0. Karena «a. dan w. berada dalam R|a, b], terdapat 6. > 0 sehingga jika
P adalah partisi bertanda dengan ||P|| < 4., maka

‘ b
‘S(ag;P)—/ Qe <e.

a

) b
<& dan ’S(%;P)—/wE

Dari ketidaksamaan ini diperoleh bahwa
b . . b
/ a. —e < S(ag;P) dan S(wg;P)</ we + €.

Karena
as(z) < f(z) <w:(x) untuk setiap z € [a, b],
diperoleh S(a.; P) < S(f;P) < S(w.; P), sehingga

b ‘ b
a: —e <S(f;P) </ we + €.

—

Jika O adalah partisi bertanda lain dengan || Q|| < ¢., maka juga berlaku

/abag—8<8(f;Q)</abw5+€.

Jika kedua ketidaksamaan ini dikurangkan dan menggunakan asumsi bahwa

b
/ (we — ) < g,
a

diperoleh bahwa
) ) b b b
S(iP) =S50 < [we— [(ac+2e= [(w—a+2e <32,
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Karena ¢ > 0 sebarang dan dengan menggunakan Kriteria Cauchy diperoleh bahwa f €
Rla,b].
[ |

WA Kelas Fungsi Terintegral Riemann

Teorema Apit sering digunakan dalam kaitannya dengan kelas fungsi tangga. Dengan defin-
isinya diberikan sebagai berikut.

Suatu fungsi s : [a,b] — R disebut sebagai fungsi tangga jika [a, b] merupakan gabun-
gan dari sejumlah hingga interval yang tidak saling tumpang tindih I, I, ..., I,, se-
hingga s bernilai konstan pada setiap interval tersebut, yaitu:

s(zr) =cp untuksemuaz €Iy, k=1,2,...,n.

Dengan demikian, fungsi tangga hanya memiliki sejumlah hingga nilai yang berbeda. Se-
bagai contoh, fungsi s : [-2,2] — R yang didefinisikan sebagai:

s(z) =

Sebelum membahas mengenai fungsi tangga yang kaitannya dengan integral Riemann.
Berikut diberikan definisi fungsi indikator dan kemudian diberikan lemma yang kaitannya den-
gan integral Riemann.

Definisi 1.3
Fungsi indikator dari suatu himpunan A4, yang dilambangkan sebagai 14, adalah fungsi
yang didefinisikan sebagai:

T 1, jikaz e A,
alz) =
0, jikaz ¢ A.

[ Catatan 1.1
Fungsi tangga pada Definisi 1.2 bisa dituliskan sebagai

s(x) = Zn: cxlr, ().
k=1
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Jika g : [a, c] — R didefinisikan oleh

dengan a < b < ¢, maka g € R|a, c| dan

L::/acg:oz(b—a)—i—,b’(c—b).

Bukti. Pertama, misalkan P := {([z;_1, =],

x;)}ir, adalah partisi bertanda dari [a, ¢] dengan

norm < §; akan ditunjukkan cara menentukan § = (<) yang bergantung pada < agar |S(g; P)—
(a(b—a)+ p(c—b))| < . Pada contoh ini perlu dilihat untuk beberapa kondisi:

Kondisi 1: Ada m sehingga z,,, = b
Pada kondisi ini bisa langsung dihitung

NE

S(f,P) = a(r; —zi—1) + Z — 1)
=1 1=m-+1
= Oé( —1'0)4—5( _l‘m)
= a(b—a)+ B(c—0b).
Dengan demikian, diperoleh
S(f;P) = (a(b—a) + B(c —b))| = 0.
Kondisi 2: Ada m sehingga x,, < b < 2,41 danz,, | <b
Perhatikan bahwa
(a(b—a) + B(c—1))
= O‘(b*zmﬁLl'm*xmflermfl —Tm—2+ -+ 21 *IE())
+B(xn —Tp—-1+Tp—1—Tp—2+ "+ Tmt2 — Tm4+1 + Tint1 — b)

= ab—xzy) + a(zy

Jr5(‘Tn —Tp1+Tp-1— Tp-2-+---

= alb—zy)+ B(@mer —b) + ia
i=1

Sehingga didapatkan

[S(f;P) = (alb—a) + B(c — b))l

Kistosil Fahim, Departemen Matematika

—Tm—1+Tm—-1 — Tm—2+ -~

+ Tm+2

-T11+Z/6

-+a:1—:c0)

— :Eerl) + 4(me1 — b)

i Lij— 1
i=m+2
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m—+1
= [Z ( — Ti— 1 + Z /8 i Li— 1] — (a(b—a) + B(c—1))

7 i=m+2

— [Z a(r; — xim1) + (Tmg1 — Tm) + Y Blai — xi_l)]

1 i=m-+2

1
_[a(b—$m)+ﬁxm+1—b +Za —xi_1) + Z Bz lel'
i=1

i=m+2
= |(@m+1 — Tm) — (1l = 2m) = B(Tmy1 — 1)
= |

(= B)(@ms1 — )| < | — B6.

Kondisi 3: Adam sehingga z,, <1 < x4 danz;, | >1

S(f:P) = (a(b—a) + B(c — b))l

= Za( — Tj— 1 + Z 5 - Ti— 1]_(a(b_a)+ﬁ(c_b))
=1 i=m-+1

= |:ZO€ — Xj— 1 + ﬁ(xm—&-l - xm + Z B :El—l)]
i=1 i=m-2

— |a(b—xm) + B(zmi1 — D) —|—ia —xi-1) + Z Bla; — x4 1]’

i=1 i=m-2
= ’,B(xm-‘rl — I‘m) — Oé(]- - J:'rn) - ,B(Im_t,_l - 1)‘
=[(8 = a)(l —2m)| < |8 —ald.

Dengan melihat hasil pada Kondisi 1, Kondisi 2 dan Kondisi 3 di atas diperoleh
S(f;P) = (a(b—a) + Bc = b))| < |8 — alo.
Sekarang pilih 0 < /(|8 — «|) didapatkan
[S(f;P) = (alb—a) + Blc = b)) <e.

Dengan demikian, ditemukan bahwa |S(g; P) — (a(b — a) + B(c — b))| < ¢ ketika ||P|| < &
dengan ¢ < ¢/(|8 — «|). Karena ¢ > 0 sebarang, ini telah membuktikan bahwa g € R|a, ¢|,
dan bahwa / g = a(b—a) + p(c — b), sebagaimana yang diinginkan. [ |

b
Jika J = [c, d] adalah subinterval dari [a,b], maka 1; € R]a,b] dan / Iy=d-c
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Bukti. Untuk ¢ = c atau b = d telah dibuktikan pada Lemma 1.1. Selain itu diamati untuk
kondisi a < ¢ < d < b. Perhatikan bahwa 1; bisa ditulis sebagai

1 =Teqg — Vao-

Mengikuti Lemma1.1dan Teorema 1.2 didapatkan 1, 4, Tj,.) € R[a, b]. Lebihlanjut, berdasarkan
Teorema 1.3 diperoleh 1; € R|a, b] dan dikombinasikan dengan Lemma 1.1 dan Teorema 1.2

b
didapatkan / I=(d—a)—(c—a)=d—c 5

[ Catatan 1.2
Ada tiga subinterval lainnya J dengan titik akhir yang sama ¢ dan d, yaitu, [¢,d), (¢, d], dan

(c,d). Karena, menurut Teorema 1.2, dapat diubah nilai fungsi pada sejumlah titik hingga
tanpa mengubah integralnya, maka hasil yang sama berlaku untuk tiga subinterval lainnya

ini.

Berikut diberikan lemma mengenai fungsi tangga yang kaitannya dengan integral Rie-
mann.

Teorema 1.7

Jika ¢ : [a,b] — R adalah fungsi tangga, maka ¢ € R|a, b).

Bukti. Berdasarkan Definisi 1.2, suatu fungsi ¢ : [a,b] — R disebut sebagai fungsi tangga
apabila berbentuk

o(r) =c, untuksemuaz ey, k=1,2,...,n.

dengan Iy, I, ..., I, adalah interval yang tidak saling tumpang tindih dengan titik ujungnya
adalah [og, Bk], k = 1,2,--- ,n dan [a,b] = U}_,I;. Lebih lanjut, berdasarkan Catatan 1.1,
fungsi tangga ¢ bisa dituliskan sebagai

p(z) = aly (@),
k=1
Sehingga, berdaarkan Lema 1.2 dan Teorema 1.3 didapatkan bahwa ¢ € R[a, b] dan

b m
/ o= cr(Be — ).
a k=1

Kita mengilustrasikan penggunaan fungsi langkah dan Teorema Squeeze dalam dua con-
toh berikutnya. Yang pertama meninjau kembali sebuah fungsi yang awalnya memerlukan
perhitungan yang rumit.
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Contoh 1.6

(a) Fungsi g yang didefinisikan oleh g(z) = 2 untuk 0 < x < 1 dan g(x) = 3 untuk
1 < x < 3. Bisa diamati bahwa ¢ adalah fungsi langkah, sehingga integralnya dapat
dihitung sebagai

/039:2.(1—0)+3-(3—1):2+6:8.

(b) Misalkan i(z) := z pada [0,1] dan P,, := {0,1/n,2/n,...,(n — 1)/n,n/n = 1}.
Didefinisikan fungsi langkah «,, dan w, pada subinterval yang tidak saling tumpang
tindih [0,1/n],[1/n,2/n],...,[(n — 1)/n, 1] sebagai berikut:

an(z) :==h((k—1)/n)=(k—1)/n untukz € [(k—1)/n,k/n), k=1,2,...,n—1,

dan
an(z):=h((n—1)/n)=(n—1)/n untukz € [(n —1)/n,1].

Artinya, «,, memiliki nilai minimum dari » pada setiap subinterval. Secara serupa,
didefinisikan w,, sebagai nilai maksimum dari / pada setiap subinterval, yaitu:

wp(z) :==k/n untukz € [(k—1)/n,k/n), k=1,2,...,n,

dan
wp(z) =1 untukz € [(n—1)/n,1].

Kemudian diperoleh
1 1
/ an:ﬁ(0+1/n+2/n+---+(n—1)/n)
0

:%(1+2+---+(n—1))

_ 1 (n=1n
- n? 2
Dengan cara yang serupa, juga diperoleh

Azmzéa+1my

:%u—1ﬁu

Dengan demikian, didapatkan

an(x) < h(z) <wp(z) untukz € [0,1]

/Ol(wn —ap) = %

Karena untuk setiap ¢ > 0, dapat dilih n sehingga 1 < ¢, maka dari Teorema Apit
n
didapatkan bahwa % dapat diintegralkan dengan nilai integral dari 4 berada di antara

dan

nilai integral dari o, dan w,, untuk semua n dan karenanya memiliki nilai 5
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Teorema 1.8
Jika f : [a,b] — R kontinu pada [a,b], maka f € R|a,b].

Bukti. Karena f kontinu pada interval tertutup terbatas [a, b], diperoleh f kontinu seragam
pada [a,b]. Jadi, untuk ¢ > 0, ada § > 0 sehingga jika u,v € [a,b] dan |u — v| < §, maka
F(w) = f0)| <e/(b— a).

Misalkan P = {x;};-, adalah partisi sehingga || P|| < ¢. Berdasarkan Teorema mengenai
eksistensi nilai maksimum dan minimum dari fungsi kontinu pada interval tertutup terbatas,
pilih u; € I; := [x;_1,x;] sebagai titik dengan f mencapai nilai minimum pada [;, dan v; € I;
sebagai titik di mana f mencapai nilai maksimum pada I;.

Selanjutnya, didefinisikan fungsi tangga «(z) dengan «(x) := f(u;) untuk =z € [z;_1,x;),
i=1,...,n—1,dan a(x) := f(u,)untuk z € [z,_1,z,]. Fungsi w(z) didefinisikan serupa
menggunakan v; sebagai pengganti «;. Diperoleh,

a(z) < f(z) <w(xz), untuk semuax € [a,b).

Juga, jelas bahwa

n n

0< /ab(w —0) = (W) = fu) @i = 1) < 30 (@i = wim1) = e

i=1 i=1

Oleh karena itu, dari Teorema Apit, f € R[a, b].

Fungsi monotone tidak harus kontinu pada setiap titik, ternyata juga dapat diintegralkan
secara Riemann. Hasil ini diberikan pada teorema di bawah ini.

Teorema 1.9

Jika f : [a,b] — R monoton pada [a,b], maka f € R]a,b].

Bukti. Misalkan f fungsi naik pada I = [a, b]. Bagi interval menjadi n subinterval sama pan-
jang I, = [z_1,xg), diperoleh z;, — z4_1 = (b —a)/n, k = 1,2,...,n. Karena f naik pada I,
nilai minimum dicapai di ujung kiri z;,_; dan nilai maksimum di ujung kanan z.

Dengan demikian, fungsi tangga «(z) := f(z;—1) dan w(x) := f(zx) untuk = € [zp_1, x1],
k=1,2,...,n,memenuhi o(z) < f(z) < w(z) untuk semua = € I dan didapatkan

[fazb;ame+f@n+~'+ﬂ%%ﬁ%

[ o=V 4 )+ ),

Mengurangkan bagian yang relevan, diperoleh
b b b—a
[ [a=""200) - f(a).
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Jadi, untuk ¢ > 0, pilih n sehingga (b — a)(f(b) — f(a))/n < . Dengan Teorema Apit, f/ dapat
diintegralkan pada I.
[

1N Teorema Penjumlahan

LG CUER BT Teorema Penjumlahan

Misalkan f : [a,b] — R dan ¢ € (a,b). Fungsi f terintegral Riemann pada |a,b| jika
dan hanya jika pembatasan f pada [a, c| dan |c, b] keduanya dapat diintegralkan secara

Riemann. Dalam hal ini: X . b
Le=Ls+[s

Bukti. (<) Misalkan pembatasan f; dari f pada [, ¢|, dan pembatasan f, dari f pada [c, b],
dapat diintegralkan secara Riemann menjadi L,; dan L, masing-masing. Maka, untuk ¢ > 0,
terdapat &' > 0 sehingga jika P, adalah partisi bertanda dari [a, ¢| dengan ||P;| < &', maka
|S(f1;P1)—L1| < /3. Demikian pula, terdapat ” > 0 sehingga jika P, adalah partisi bertanda
dari [c, b] dengan ||P,|| < 6", maka |S(fa; P1) — Lo| < /3.

Jika M adalah batas dari | f|, maka definisikan 6 = min(&’, 8", /60 ) dan pilih P sebagai
partisi bertanda dari [a, b] dengan ||P|| < §. Akan dibuktikan bahwa:

IS(f;P) — (L1 + La)| <e. (1.4)

(i) Jika ¢ adalah titik partisi dari P, oleh karena itu partisi 7 terbagi menjadi dua partisi P;
dari [a, c] dan P, dari [c,b]. Karena S(f;P) = S(f1;P1) + S(f2;P1), serta [[Py]| < &' dan
|5 < 6”, maka ketidaksamaan (1.4) diperoleh.

(ii) Jika ¢ bukan titik partisi dalam P = {(I;,t,)}7, dengan I, = [z}_1,z;], maka ada k < m
sehingga ¢ € (25,1, ). Didefinisikan P; sebagai partisi bertanda dari [a, ¢] dengan:

Pri= {1, t1), -, (Te—1, tr1), ([wr-1, ], 0},
dan P, sebagai partisi bertanda dari [c, b] dengan:
Pa = {([e.xn) ), Tnrns tis)s - - (Iins tn) ).
Perhitungan secara langsung menunjukkan bahwa:
S(f; P)=S(f;P1)=S8(f; P2) = f(t)(@h—zr1)—f(0)(wp—ar-1) = (f(tr)—f(0) (wp—211),
diperoleh:
IS(f:P) — S(f;P1) — S(f: Pa)| < 2M (), — z_1) < 2M6 < /3.
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Karena | P, || < & dan ||P| < 6", maka:
S(f;P1) — Li| <¢/3 dan [S(f;P2) — La| < /3,

sehingga diperoleh (1.4).

Karena ¢ > 0 sebarang, maka f € R[a, b] dan
b c b
fr=foe ]
terbukti.

(=) Misalkan f € R[a,b], dan untuk ¢ > 0, ambil . > 0 pada Teorema Kriteria Cauchy
1.5. Misalkan f; adalah pembatasan f pada [a, | dan P;, Q; adalah partisi bertanda dari
[a,c] dengan || Py < 7. dan ||Q;|| < n.. Dengan menambahkan titik partisi dan tanda dari
[c, b], partisi P, dan Q; dapat diperluas menjadi partisi bertanda P dan Q pada [a, ] yang
memenuhi ||P| < n. dan ||Q]| < n.. Jika digunakan titik tambahan dan tanda yang sama di
[c, b] untuk P dan Q, maka:

S(f;P) = S(f; Q) =S(f1;P1) — S(f1; Q).

Karena P dan Q memiliki norm 7., maka |S(f; P) — S(f; Q)| < e. Oleh karena itu, Kondisi
Cauchy menunjukkan bahwa pembatasan f; dari f pada [a, ¢] adalah di R]a, ¢|. Dengan cara
yang sama, dapat dilihat bahwa pembatasan f, dari f pada [c, b] adalah di R|c, b]. Persamaan

/abf=/acf+/cbf-

mengikuti dari bagian pertama pada pembuktian.

‘ Jika f € R[a, b], dan jika [c, d] C [a, b], maka pembatasan f pada [c, d] adalah di R]c, d].

Bukti. Karena f € R[a,b] dan ¢ € [a, b] dan dari Teorema Penjumlahan 1.10, diperoleh bahwa
pembatasan f pada [c, b] adalah di R[c, b]. Tetapi jika d € (¢, b), maka dengan menggunakan
Teorema Penjumlahan 1.10 menunjukkan bahwa pembatasan f pada [c, d] adalah di R]c, d].

[ |

Akibat 1.2

Jika f € R[a,b] danjikaa =cy < ¢; < --- < ¢, = b, maka pembatasan f pada setiap
subinterval [¢;_1, ¢;] adalah terintegral Riemann dan

/abf:i ci P

i=1"¢i-1
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Sampai saat ini, telah dipertimbangkan integral Riemann pada interval [a, b] dengan a < b.
Sangat berguna untuk mendefinisikan integral secara lebih umum yang sifat tambahannya
didefinisikan di bawabh ini.

Definisi 1.4

Jika f € R[a,b] dan jika «, 8 € [a, b] dengan « < 3, maka didefinisikan:

/ﬂaf::—/jf dan /;fzzo.

Teorema 1.11

Jika f € Ra,b] dan jika «, 3,~ adalah sebarang bilangan dalam [a, b], maka:

/jf=/ff+/ﬁaf7 (1.5)

keberadaan dua integral dari tiga integral ini menjamin keberadaan integral ketiga dan
kebenaran Persamaan (1.5).

Bukti. Jika dua dari bilangan «, 3,y sama, maka (1.5) berlaku. Dengan demikian, dapat dia-
sumsikan bahwa ketiga bilangan ini berbeda.
Demi simetri, kita memperkenalkan ekspresi:

L(a, ,7) ::/;f+/ff+/:f-

Jelas bahwa (1.5) berlaku jika dan hanya jika L(«, 3,v) = 0. Oleh karena itu, untuk membuk-
tikan pernyataan tersebut, perlu ditunjukkan bahwa L = 0 untuk semua enam permutasi dari
argumen «, (3, .
Perhatikan bahwa Teorema Penjumlahan 1.10 menyatakan bahwa L(«, 5,v) = 0 jika o <
~ < . Namun mudah untuk melihat bahwa L(j3, v, «) dan L(~, a, 3) sama dengan L(«, 3, 7).
Selain itu, bilangan:

L(ﬁ? a77)7 L(a7 IY’ B)’ dan L(’Y’ B? a)

semuanya sama dengan —L(«;, 3,~). Oleh karena itu, L bernilai nol untuk semua konfigurasi
yang mungkin dari ketiga titik tersebut.
[

IWRN | atihan

1. Misalkan f : [a,b] — R. Tunjukkan bahwa f ¢ R[a, ] jika dan hanya jika terdapat ¢y > 0
sehingga untuk setiap n € N, terdapat partisi bertanda P,, dan Q,, dengan ||P,|| < 1/n dan
|Qnll < 1/n sehingga |S(f; Pn) — S(f; Qn)| > <0.
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3.

8.

11.

12.

13.

14.

15.

. Diberikan fungsi h yang didefinisikan sebagai h(xz) := = + 1 untuk = € [0, 1], bilangan

rasional, dan h(z) := 0 untuk = € [0, 1], bilangan irasional. Tunjukkan bahwa / tidak dapat
diintegralkan secara Riemann.

Misalkan H(z) := k untuk z = 1/k(k € N) dan H(z) := 0 untuk lainnya pada [0, 1]. Tun-
jukkan bahwa H tidak dapat diintegralkan secara Riemann.

.Jika a(z) := —x dan w(z) := z serta jika a(z) < f(z) < w(z) untuk semua z € [0, 1],

apakah itu mengikuti Teorema Apit 1.6 bahwa f € R|0,1]?

. Misalkan f : [a,b] — R hanya memiliki sejumlah berhingga nilai berbeda. Apakah f meru-

pakan fungsi langkah?

. Jika S(f;P) adalah sembarang jumlah Riemann dari f : [a,b] — R, tunjukkan bahwa ter-

b .
dapat fungsi tangga 1 : [a,b] — R sehingga / Y =S8(f;P).

b b
. Jika f dan g kontinu pada [a, b] dan jika / [ = / g, buktikan bahwa terdapat ¢ € [a, b]

sehingga f(c) = g(c).
Jika f didefinisikan sebagai pembatasan w(x) di mana ¢ € (a,b) bersifat sebarang, tun-

jukkan bahwa: ) ) ) .
o= foo e [a=]r- [

Petunjuk: Misalkan a(z) := = — z; w(z) := z; ¢ € (a,b); terapkan Teorema Penjepit.

. Tunjukkan bahwa g(x) := sin(1/z) untuk z € (0, 1] dan ¢g(0) = 0 termasuk ke dalam R0, 1].
10.

Misalkan f : [a,b] - R,a = ¢y < ¢1 < --- < ¢, = b, dan pembatasan f pada [¢;_1, ¢;]
termasuk ke dalam R|c;_1, ¢;] untuk i = 1,...,m. Buktikan bahwa f € R]a,b] dan bahwa
formula dalam Akibat 1.2 berlaku.

Jika f terbatas dan terdapat himpunan berhingga E sehingga f kontinu di setiap titik
[a, b]\ F/, maka tunjukkan bahwa f € R|a,b].

Jika f kontinu pada [a,b], a < b, tunjukkan bahwa terdapat ¢ € [a,b] sehingga didapat
/bf = f(¢)(b — a). Hasil ini kadang disebut Teorema Nilai Tengah untuk Integral.

J(ilka f dan g kontinu pada [a,b] dan g(x) > 0 untuk semua x € [a,b], tunjukkan bahwa
terdapat ¢ € [a,b] sehingga /b fg = f(o) /b g. Tunjukkan bahwa kesimpulan ini gagal
jika g(x) > 0 tidak berlaku. (Paerhatikan bahwa hasil ini adalah perpanjangan dari latihan
sebelumnya.)

b 1/n
Misalkan f kontinu pada [a, b], f(x) > Ountuk = € [a, b], dan M,, := (/ f”) . Tunjukkan
bahwa Jim M, = sup{f(x) : = € [a, b}
Misalkan a > 0 dan f € R[—a, a].

a. Jika f genap (artinya, jika f(—z) = f(z) untuk semua = € [0, a]), tunjukkan bahwa
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- f= 2/0 f.
b. Jika f ganijil (artinya, jika f(—z) = —f(x) untuk semua = € [0, a]), tunjukkan bahwa
f=0.

—a

16. Jika f kontinu pada [—a, a), tunjukkan bahwa | f(z)%*dz = 2/ f(z)?dx.
—a 0

Il Integral Darboux

Pendekatan alternatif untuk integral dikembangkan oleh matematikawan Prancis Gaston Dar-
boux (1842-1917). Darboux telah menerjemahkan karya Riemann tentang integrasi ke dalam
bahasa Prancis untuk diterbitkan di jurnal Prancis, dan terinspirasi oleh komentar Riemann,
ia mengembangkan metode integral dalam bentuk integral atas dan bawah yang diterbitkan
pada tahun 1875. Penjumlahan pendekatan ini diperoleh dari partisi dengan menggunakan
infimum dan supremum dari nilai fungsi pada subinterval, yang tidak harus dicapai sebagai
nilai fungsi dan karenanya jumlah tersebut tidak harus berupa jumlah Riemann.

Pendekatan ini secara teknis lebih sederhana karena menghindari kerumitan bekerja den-
gan pilihan tanda yang tak terhingga banyaknya. Namun, bekerja dengan infimum dan supre-
mum juga memiliki kerumitan, seperti tidak adanya sifat penjumlahan pada kuantitas terse-
but. Selain itu, ketergantungan pada sifat urutan bilangan real menyebabkan kesulitan dalam
memperluas integral Darboux ke dimensi yang lebih tinggi, dan lebih penting lagi, mengham-
bat generalisasi ke permukaan yang lebih abstrak seperti manifold.

Pada bagian ini, kita memperkenalkan integral atas dan bawah dari fungsi terbatas pada
interval, dan mendefinisikan fungsiterintegral menurut Darboux jika kedua kuantitas ini sama.
Selanjutnya, dengan melihat contoh dan menetapkan kriteria keterintegralan seperti Cauchy
untuk integral Darboux. Bagian ini diakhiri dengan membuktikan bahwa pendekatan Riemann
dan Darboux terhadap integral sebenarnya sama, yaitu, suatu fungsi pada interval tertutup
dan terbatas dapat diintegralkan menurut Riemann jika dan hanya jika dapat diintegralkan
menurut Darboux.

IR Jumlah Atas dan Bawah

Misalkan f : I — R adalah fungsi terbatas pada I = [a,b] dan P = {z¢,x1,...,z,) adalah
partisi dari I. Untuk k = 1,2, ..., n, didefinisikan

my = inf{f(x) : x € [xp_1,2x]}, My :=sup{f(z):z € [vr_1,zx]}

Jumlah bawah f sesuai partisi P didefinisikan sebagai
L(f;P) =Y mu(xp — xp-1),
k=1
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dan jumlah atas f sesuai partisi P didefinisikan sebagai
U(f;P) = My(x — p_1).
k=1

Jika f adalah fungsi positif, maka jumlah bawah L(f;P) dapat ditafsirkan sebagai luas dari
gabungan persegi panjang dengan alas [zj_1, zx] dan tinggi m;. Demikian pula, jumlah atas
U(f;P) dapat ditafsirkan sebagai luas dari gabungan persegi panjang dengan alas [zj_1, x|
dan tinggi M. Interpretasi geometris ini menyarankan bahwa, untuk partisi tertentu, jumlah
bawah kurang dari atau sama dengan jumlah atas. Kita sekarang akan membuktikan hal ini.

Jika f : I — R terbatas dan P adalah partisi sebarang dari I, maka

L(f;P) <U(f;P).

Bukti. Misalkan P := (zg,x1,...,x,). Karenam; < Mpuntukk =1,2,... , ndanxy—z,_1 >
Ountuk £ = 1,2,...,n, maka diperoleh

L(f;P) = Zn: my (T — rp-1) < z": My (xy, — 2-1) = U(f; P).
k=1 k=1

Jika P := (zg,x1,...,2,) dan Q := (yo,v1, ..., ym) adalah partisi-partisi dari 7, dikatakan
bahwa O adalah perbaikan dari P jika setiap titik partisi z;, € P juga termasuk dalam Q (yaitu,
jika P C Q). Partisi perbaikan @ dari partisi P dapat diperoleh dengan menambahkan sejum-
lah titik hingga ke P. Dalam hal ini, setiap subinterval [x;_1, ;| di P dapat ditulis sebagai
gabungan interval-interval di Q, yaitu

[Tr—1,2x] = [Yi-1,¥5] U [y, yj+1] U~ U [yn—1, Yn)-

Berikut diberikan lema yang membahas pengaruh partisi perbaikan terhadap jumlah atas dan
jumlah bawah.

Jika f : I — R terbatas, P adalah partisi dari I dan Q adalah partisi perbaikan dari P,
maka

L(f;P) < L(f;Q) dan U(f;Q) <U(f;P).

Bukti. Misalkan P := (x¢,z1,...,x,). Pertama diperiksa efek dari menambahkan satu titik
ke P. Misalkan z € I sedemikian sehingga =, < z < z;, dan misalkan P’ adalah partisi

/
Pli= (20, X1y oy The1y 2, Thy -+, Tpy)s
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yang diperoleh dari P dengan menambahkan = ke P. Misalkan m; dan M, adalah bilangan-
bilangan
my, = inf{f(x) :x € [v1_1,2]}, M} :=sup{f(z): 2 € [rr_1,2]},

my = inf{f(x) : x € [z,xx]}, M} :=sup{f(x): € [z, 4]},

dan berlaku
mp <mjy, mE<mp, M, <M, M <M.

Oleh karenaitu,
my(zp — xp—1) = mi(z — zp—1) + mg(zp — 2) <my(z — xp_1) + mi(xg — 2),

yang berarti

my (e — 2p_1) < my(z — zp_1) + my(zg — 2).

Dengan argumen serupa untuk My, diperoleh
Mi(z — zk_1) + M (z) — 2) < My(zp, — 2p_1)-

Dengan ini, dapat disimpulkan bahwa L(f; P) < L(f; Q) dan U(f; Q) < U(f;P). Argumen ini
dapat diperluas ke semua interval yang terbagi dengan menambahkan titik, sehingga partisi
perbaikan selalu meningkatkan jumlah bawah dan menurunkan jumlah atas.

[

Misalkan f : I — R dibatasi. Jika P;, P, adalah dua partisi dari I, maka

L(f;P1) <U(f;Pa).

Bukti. Misalkan Q := P; U P, menjadi partisi yang diperoleh dengan menggabungkan titik-
titik dari P; dan P,. Maka Q adalah penyempurnaan dari P; dan P». Oleh karena itu, berdasarkan
Lema 1.3 dan 1.4, kita simpulkan bahwa

L(f;P1) < L(f;Q) <U(f;Q) <U(f;Pa).

IR Integral Bawah dan Atas

Dalam subbab ini himpunan semua partisi dari interval I dinyatakanoleh 27(I). Jika f : I — R
adalah fungsi terbatas, maka setiap P € #(I) dapat ditentukan dua bilangan: L(f;P) dan
U(f;P). Oleh karena itu, koleksi #(I) menentukan dua himpunan bilangan: 1) himpunan
jumlah bawah L(f;P) dan himpunan jumlah atas U(f;P) untuk P € 2(I).
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Definisi 1.5

Misalkan I = [a,b] dan f : I — R adalah fungsi terbatas. Integral bawah dari f pada I
adalah bilangan

L(f) := sup{L(f; P) : P € Z(I)},

dan integral atas dari f pada I adalah bilangan

U(f) := mf{U(f;P) : P € 2(I)}.

Karena f adalah fungsi terbatas, nilai-nilai di bawah ini eksis:
my:=inf{f(x):x €1} dan Mj:=sup{f(x):x € I}.
Dapat segera terlihat bahwa untuk setiap P € 22(I), berlaku
mr(b—a) < L(f; P) SU(f; P) < Mi(b— a).
Dapat disimpulkan bahwa

mi(b—a) < L(f) dan U(f) < M(b—a).

Teorema 1.12

Misalkan I = [a,b] dan f : I — R adalah fungsi terbatas. Maka integral bawah L(f) dan
integral atas U(f) dari f pada I ada. Lebih lanjut,

L(f) < U(f).

Bukti. Jika P, dan P, adalah partisi-partisi dari 7, maka dari Lemma 1.3 diperoleh L(f; P;) <
U(f;P2). Oleh karena itu bilangan U( f; P») adalah batas atas untuk himpunan {L(f; P) : P €
Z(1)}. Akibatnya, L( f), sebagai supremum dari himpunan ini, memenuhi

L(f) SU(f;Po).

Karena P, adalah partisi sembarang dari 7, maka L( f) adalah batas bawah untuk himpunan
{U(f;P):P e P(I)}. Akibatnya, didapatkan

L(f) < U(f).

IR Integral Darboux

Jika I adalah interval tertutup terbatas dan f : 7 — R adalah fungsi terbatas, telah dibuktikan
pada Teorema 1.12 bahwa integral bawah L(f) dan integral atas U(f) selalu ada. Selain itu,
selalu berlaku L(f) < U(f). Namun, mungkin saja terjadi L(f) < U(f), seperti yang akan
dilihat kemudian. Di sisi lain, terdapat banyak fungsi dengan L(f) = U(f).
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Definisi 1.6
Misalkan I = [a,b] dan f : I — R adalah fungsi terbatas. Fungsi f disebut terintegral
Darboux pada I jika L(f) = U(f). Dalam kasus ini, integral Darboux dari f pada I
didefinisikan sebagai nilai L(f) = U(f).

Dengan demikian, kita melihat bahwa jika integral Darboux dari suatu fungsi pada interval
ada, maka integral tersebut adalah bilangan riil unik yang berada di antara jumlah bawah dan
jumlah atas.

Karena akan segera dibuktikan kesetaraan antara integral Darboux dan Riemann, akan
b

digunakan notasi standar/ f atau / f(z) dz untuk integral Darboux dari fungsi f pada
[a, b]. Konteksnya seharusnya mencegah kebingungan.

Contoh 1.7

(a) Fungsi konstan adalah fungsi yang terintegralkan Darboux. Misalkan f(x) := c un-
tuk € I := [a,b]. Jika P adalah partisi sembarang dari 7, maka mudah dilihat
bahwa L(f;P) = ¢(b — a) = U(f;P) (Lihat Latihan 7.4.2). Oleh karena itu, inte-
gral bawah dan integral atas diberikan oleh L(f) = ¢(b — a) = U(f). Akibatnya, f

b
terintegral Darboux pada I dan / f=rcb—a).

(b) Misalkan ¢ didefinisikan pada [0, 3] sebagai berikut: g(z) := 2 jika0 < 2 < 1 dan
g(z) := 3jika2 < x < 3. Untuk ¢ > 0, didefinisikan partisi P. := {0,1,1 + ¢, 3},
maka diperoleh jumlah atas

U(g;P.)=2-(1—0)+3-(14+e—1)+3-(3—1—-¢€)=2+3+6—3=8

Oleh karena ity, integral atas memenuhi U(g) < 8. Demikian pula, diperoleh jumlah
bawah

L(g;P.)=2-(1-0)+2-(14+e—1)+3-(3—1—¢) =242 +6—3c =8 —¢,

sehingga integral bawah memenuhi L(g) > 8. Sedangkan Teorema 1.12 mem-
berikan L(g) < U(g) dan oleh karena itu L(g) = U(g) = 8. Jadi integral Darboux
dari g adalah 8.

(c) Fungsi h(z) := = dapat diintegralkan pada [0, 1]. Misalkan P,, adalah partisi dari

I := [0, 1] menjadi n subinterval yang diberikan oleh

Karena h adalah fungsi yang meningkat, infimum dan supremum pada subinterval
((k — 1)/n,k/n) dicapai di titik ujung kiri dan kanan, berturut-turut, dan diberikan
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oleh my = (k — 1)/n dan M = k/n. Selain itu, karena z;, — xx_1 = 1/n untuk
semua k = 1,2,...,n, diperoleh

LhPp) =0+ 14+ (n—1))/n% UmP,)=(1+2+-+mn)/n’
Jika digunakan rumus 1 + 2 + - - +m = m(m + 1)/2, untuk m € N, didapatkan

L(h;Py) = (”_1)":;<1—1>, U(h;Pn):M:1<1+l>.

2n? n 2n? 2 n

Karena himpunan partisi {P,, : n € N} adalah bagian dari semua partisi &7(1) dari
I, diperoleh

% — sup{L(h:P,) : n € N} < sup{L(h; P) : P € 2(I)} = L(h),
dan juga bahwa

Uh) = inf{U(h: P) : P € P(I)} < inf{U(h: Pn) : n € N} = %

Karena % < L(h) < U(h) < % bisa disimpulkan bahwa L(h) = U(h) = % Oleh
karena itu, h terintegral Darboux pada [0, 1] dan

1h 1 d !
= [ zdr=—.
Jot= =g

(d) Fungsi yang tidak dapat diintegralkan. Misalkan I := [0, 1] dan f : I — R adalah
fungsi Dirichlet yang didefinisikan oleh

1, untuk z rasional,
flz) = o
0, untuk z irasional.

Jika P := (z9,x1,...,z,) adalah partisi sembarang dari [0, 1], maka karena setiap
interval nontrivial mengandung bilangan rasional dan irasional, sehingga diperoleh
my = 0 dan M, = 1. Oleh karena itu, didapat L(f;P) = 0, U(f;P) = 1, untuk
semua P € #(I), sehingga L(f) = 0dan U(f) = 1. Karena L(f) # U(f), fungsi f
tidak terintegral Darboux pada [0, 1].

Teorema 1.13

Misalkan I := [a,b] dan f : I — R adalah fungsi terbatas pada I. Fungsi f dapat
diintegralkan Darboux pada I jika dan hanya jika untuk setiap ¢ > 0, terdapat partisi
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P. dari I sehingga
U(f;Pe) = L(f;Pe) <e. (1.6)

Bukti. Jika f terintegral Darboux, maka L(f) = U(f). Jika ¢ > 0 diberikan, dari definisi
integral bawah sebagai supremum, terdapat partisi P; dari I sehingga L(f) —¢/2 < L(f; Pi).
Dengan cara serupa, terdapat partisi P, dari I sehingga U(f; P2) < U(f) + /2.

Misalkan P. := P; U Py, maka P- adalah perbaikan dari P; dan P;. Akibatnya, menurut
Lema 1.3 dan 1.4, didapat

L(f)—e/2 < L(f;P1) < L(f;P-) SU(f;P:) SU(f;P2) <U(f) +¢/2,
dan oleh karena itu

U(f;P=) = L(f;Pe) < (U(f) +¢/2) = (L(f) —¢/2) = (U(f) = L(f)) + &

Karena L(f) = U(f), dapat disimpulkan bahwa persamaan (1.6) terpenuhi.

Untuk membuktikan sebaliknya, misalkan berlaku bahwa untuk sebarang ¢ > 0, terdapat
partisi P. dari I sehingga (1.6) terpenuhi. Kemudian berdasarkan definisi integral atas dan
bawah diperoleh

L(f;P:) < sup{L(f;P) : P € 2(I)} = L(f)

dan
U(f)=inf{L(f;P): P e PU)} SU(f;P:).

Bberdasarkan asumsi, (1.6) berlaku untuk sebarang > 0, sehingga
U(f)_L(f) < U(f;PE)_L(f;PE) <e

Karena ¢ > 0 bersifat sebarang, bisa disimpulkan U(f) < L(f). Karena ketaksamaan L(f) <
U(f) selalu benar, diperoleh L(f) = U(f) dan oleh karena itu f dapat diintegralkan Darboux.
[

Akibat 1.3
Misalkan I = [a,b] dan f : T — R adalah fungsi terbatas. Jika {P,, : n € N} adalah
barisan partisi dari I sehingga

lim (U(f;Pn) = L(f;Pn)) =0, (1.7)

n—00

maka f terintegral Darboux dan

thfP /f—hm U(f;Pn). (1.8)
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Bukti. Misalkan (1.7) terpenuhi. Berdasarkan definisi limit barisan, diperoleh bahwa untuk
sebarang ¢ > 0 terdapat K sehingga jikan > K maka U(f;P,) — L(f;P,) < . Oleh karena
itu, / memenuhi kriteria pada Teorema 1.13, sehingga f terintegral Darboux yaitu U(f) =

L(f) = /ab f. Selain itu, juga bisa diperoleh
0< U(f,Pn) - U(f) = U(f,Pn) - L(f) < U(f»Pn) - L(fvpn) <e

untuk setiap n > K. Dengan demikian

lim U(f;P,) = U(f) = / 't

n—oo

Untuk melengkapi (1.8), gunakan (1.7) dan diperoleh
nhHHSO U(f, Pn) = nILHSO(U(f’ Pn) - L(f, Pn)) + nlgIoloL(fa Pn) = ,}LHC}OL(]C’ Pn)
[

Makna Akibat ini adalah bahwa meskipun definisi integral Darboux melibatkan semua
partisi interval yang mungkin, untuk fungsi tertentu, keberadaan integral dan nilainya sering
kali dapat ditentukan dengan barisan partisi tertentu.

Sebagai contoh, jika h(x) := z pada [0, 1] dan P,, adalah partisi seperti pada Contoh 1.7-(c),
maka

lim (U(h; Ppn) — L(h; Py)) = Jim 1/n=0

n—0o0

dan oleh karena itu

1 1 1
/ xdx = lim L(h; P,) m 5(1+1/n) =3
0

=1l
n—oo n—oo

IICR'W Fungsi Kontinu dan Monoton

Telah ditunjukkan pada subbab 1.2 bahwa fungsi yang kontinu atau monoton pada selang ter-
tutup dan terbatas adalah terintegralkan Riemann. Pembuktian menggunakan pendekatan
dengan fungsi tangga dan Teorema Apit 1.6. Kedua pembuktian ini memanfaatkan secara
esensial fakta bahwa fungsi kontinu maupun fungsi monoton mencapai nilai maksimum dan
minimum pada selang tertutup dan terbatas. Artinya, jika f adalah fungsi kontinu atau mono-
ton pada [a, b], maka untuk partisi P = (zg, x1,...,zy,), nilai

My =sup{f(x):x € I}, my =inf{f(z): 2z € I}

untuk £ = 1,2, ..., n dicapai sebagai nilai fungsi pada titik tertentu. Untuk fungsi kontinu, ini
dibahas pada bab fungsi kontinu mengenai nilai maksimum dan minimum, dan untuk fungsi
monoton, nilai ini dicapai di titik ujung kanan dan kiri selang.
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Jika kita mendefinisikan fungsi tangga w pada [a, b] dengan
w(z):= M, untukzx € [xp_1,2r), k=1,2,...,n—1
dan
w(z):= M, untukz € [z,_1,x,],

maka kita perhatikan bahwa integral Riemann dari w diberikan oleh

b n
/ W= Z My (zp — xp—1).
a k=1

Sekarang pada subbab ini jumlah tersebut dikenal sebagai jumlah atas Darboux U( f; P), se-
hingga diperoleh

[ e=vsm)
Demikian pula, jika fungsi langkah « didefinisikan oleh
a(z) :=mg untukz € [zp—1,2), k=1,2,....,n—1
dan
a(z) :=m, untuk z € [z,_1, )],

maka didapat integral Riemann
b n
/ a =" my(xr — zp—1) = L(f; P).
a k=1

Kurangkan kedua integral di atas, sehingga didapat

n

b
[ @ —a) = S (M~ ma)(on — 211) = U P) = LS P).
a k=1
Bisa dilihat bahwa Kriteria Keterintegralan Darboux 1.13 adalah padanan dari Teorema Apit
1.6 untuk integral Riemann.

Oleh karena itu, jika pada pembuktian dari Teorema 1.8 dan 1.9 dilakukan penggantian
integral fungsi tangga dengan jumlah bawah dan atas yang sesuai, maka diperoleh pembuk-
tian dari fungsi kontinu dan fungsi monoton yang terintegral Darboux. Sebagai contoh, pada
Teorema 1.8 untuk fungsi kontinu, didapat

(@) = flu) =mi,  welx) = f(v) =M,

dan dengan mengganti integral dari w, — . dengan U(f; P) — L(f;P).)
Dengan demikian, diperoleh teorema berikut.
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Teorema 1.14

Jika fungsi f pada selang I = |a,b] adalah kontinu atau monoton pada I, maka f terin-
tegral Darboux pada I.

Pengamatan sebelumnya yang menghubungkan integral Riemann dan Darboux memainkan
peran dalam pembuktian bahwa integral Riemann dan Darboux ekuivalen, yang mana akan
dibahas pada bagian selanjutnya. Tentu saja, setelah hal tersebut dibuktikan, maka teorema
sebelumnya akan menjadi konsekuensi langsung.

IR Hubungan antara Integral Riemann dan Integral Darboux

Subbab ini diakhiri dengan sebuah pembuktian bahwa definisi integral menurut Riemann dan
Darboux adalah ekuivalen dalam arti bahwa suatu fungsi pada interval tertutup dan terbatas
adalah terintegralk Riemann jika dan hanya jika fungsi tersebut terintegral Darboux, serta
nilai integralnya sama. Hal ini tidak langsung terlihat jelas. Integral Riemann didefinisikan
dalam bentuk jumlah nilai fungsi (dengan titik sampel) bersama dengan suatu proses limit
berdasarkan panjang subinterval dalam suatu partisi. Di sisi lain, integral Darboux didefin-
isikan dalam bentuk jumlah yang menggunakan infimum dan supremum dari nilai fungsi,
yang tidak harus berupa nilai fungsi itu sendiri, serta suatu proses limit berdasarkan par-
tisi perbaikan, bukan berdasarkan ukuran subinterval dalam suatu partisi. Namun, keduanya
ternyata ekuivalen.

Latar belakang yang diperlukan untuk membuktikan kesetaraan ini sudah tersedia. Seba-
gai contoh, suatu fungsi terintegral Darboux, selain dapat dikenali dengan jumlah Darboux
atas dan bawah juga bisa dikenali dengan integral Riemann dari fungsi tangga. Dengan
demikian, Kriteria Keterintegralan 1.13 untuk integral Darboux berkorespondensi dengan Teo-
rema Apit 1.6 pada integral Riemann. Sebaliknya, jika suatu fungsi terintegral Riemann, defin-
isi supremum dan infimum memungkinkan dipilih titik sampel sehingga jumlah Riemann da-
pat dibuat sedekat mungkin dengan jumlah Darboux atas dan bawah sesuai yang diinginkan.
Dengan cara ini, bisa dihubungkan integral Riemann dengan integral Darboux atas dan bawah.
Rincian lebih lanjut diberikan dalam pembuktian.

Teorema 1.15

Sebuah fungsi f pada I = |a,b] adalah terintegral Darboux jika dan hanya jika fungsi
tersebut terintegral Riemann.

Bukti. Misalkan f terintegral Darboux. Untuk sebarang ¢ > 0, ambil partisi P. = {I; . };:_;
dari [a, b] sehingga
U(f;Pe) = L(f; Pe) <e.
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Untuk partisi ini, didefinisikan fungsi tangga a. dan w. dengan
We(x) = My, ae(z)=my., untukz e Ij,.
dengan M, adalah supremum dan m;, adalah infimum dari f pada I;, .. Jelas bahwa
a:(w) < f(x) < welw), Ve € [a,b]. (1.9)

Dari Teorema 1.7, didapatkan bahwa w dan « terintegral Riemann dan nilai integralnya diberikan
oleh

b n b n
/ we =Y My(zy — zp—1) = U(f;P:) dan / az =Y my(zp —x31) = L(f; Pe).
a k=1 @ k=1
Oleh karena itu, didapat

[ a0 = U P~ 0P <<

Dengan menggunakan Teorema Apit 1.6, maka f adalah fungsi Riemann terintegrasi. Selain
itu, amati bahwa (1.9) dan (1.3.5) berlaku untuk setiap partisi 7 dan oleh karena itu integral
Riemann dari f terletak di antara L(f; P) dan U(f; P) untuk setiap partisi P. Oleh karena itu,

integral Riemann dari f sama dengan integral Darboux dari f.
b

Sekarang, anggap bahwa f adalah fungsi terintegral Riemann dan misalkan A = f
menyatakan nilai dari integralnya. Sehingga, berdasarkan Teorema 1.4, f terbatas dan untuk
setiap ¢ > 0 ada § > 0 sehingga untuk setiap partisi bertanda P dengan ||P| < 4, didapat
1S(f: P — A| < ¢, yang dapat ditulis sebagai

A—e<S(f;P)<A+e. (1.10)
Karena Mj, = sup{f(z) : « € [z}_1, 2]} adalah nilai supremum pada [zj_1, x}], dapat dipilih
partisi bertanda P = {([zx_1,z1],t,)} dengan tanda t;, dalam [z_,,z;] sehingga f(t;) >
My, —¢/(b — a). Akibatnya diperoleh
S(fiP) =" ftw)(@r — k1) = > Mylag —zp1) —e = U(f;P) —e 2 U(f) —e. (1.11)
k=1 k=1
Menggabungkan pertidaksamaan (1.10) dan (1.11), didapatkan

A4+e>S(f;P)>U(f) —e.

Oleh karena itu diperoleh U(f) < A + 2¢. Karena ¢ > 0 sebarang, ini menyiratkan bahwa
U(f) < A

Dengan cara yang sama, jumlah bawah juga dapat didekati dengan jumlah Riemann dan
menunjukkan bahwa L(f) > A — 2e untuk sebarang ¢ > 0, yang menyiratkan L(f) > A.
Dengan demikian, didapatkan pertidaksamaan A < L(f) < U(f) < A, yang artinya L(f) =
U(f)y=A= /b /. Oleh karena itu, fungsi f adalah terintegral Darboux dengan nilai integral-

Ja
nya sama dengan integral Riemann.
[ |
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1.

10.

11.

12,

13.

I Latihan

Misalkan f(z) := |z| untuk —1 < 2 < 2. Hitung L(f; P) dan U(f; P) untuk partisi berikut:
a. Py :=(-1,0,1,2),

b. Py := (—1,-1/2,0,1/2,1,3/2,2).

. Buktikan bahwa jika f(z) := c untuk = € [a,b], maka integral Darboux-nya sama dengan
c(b—a).

. Misalkan f dan g adalah fungsi terbatas pada I = [a,b]. Jika f(z) < g(x) untuk semua
x € I,tunjukkan bahwa L(f) < L(g) dan U(f) < U(g).

. Misalkan f terbatas pada [a, b] dan k& > 0. Tunjukkan bahwa L(kf) = kL(f) dan U(kf) =
kU(f)-

. Misalkan f, g, h adalah fungsi terbatas pada I = [a, b] sehingga f(z) < ( ) < h(z) untuk

semua x € I. Tunjukkan bahwa jika f dan h terintegral Darboux serta / / h, maka

b b
g juga terintegral Darboux dengan / g= / I

. Misalkan f didefinisikan pada [0, 2] dengan f(x) := 1 jika x # 1 dan f(1) := 0. Tunjukkan
bahwa integral Darboux dari f/ ada dan tentukan nilainya.

. a. Buktikan bahwa jika g(z) := O untuk 0 < = < % dan g(z) := 1 untuk % <z < 1, maka

integral Darboux dari g pada [0, 1] adalah %

b. Apakah kesimpulan tetap berlaku jika nilai ¢ di titik % diubah menjadi 13?
. Misalkan f kontinu pada I = [a,b] dan f(z) > 0 untuk semua = € I. Buktikan bahwa jika
L(f) =0, maka f(z) = 0 untuk semua x € I.
. Misalkan f; dan f, adalah fungsi terbatas pada [a, b]. Tunjukkan bahwa L(f) + L(f2) <
L(f1 + fo)-
Jika f adalah fungsi terbatas pada [a, b] sehingga f(z) = O kecualiuntuk z di{c1, ca, ..., ¢, }
dalam [a, b], tunjukkan bahwa L(f) = U(f) = 0.
Misalkan f(z) = 2 untuk 0 < z < 1. Untuk partisi P,, :== (0,1/n,2/n,...,(n — 1)/n,1),
hitung L(f,P,) dan U(f, P,), serta tunjukkan bahwa L(f) = U(f) = é (Gunakan rumus

1)(2n + 1
12492 ooyt = UOE )6(n+ ) )

Misalkan P adalah partisi yang keberadaannya dijamin oleh Teorema Kriteria Keterinte-
gralan Darboux 1.13. Tunjukkan bahwa jika P adalah partisi sembarang, maka U(f;P) —
L(f;P) <e.

Tuliskan pembuktian bahwa suatu fungsi f pada [a, b] terintegral Darboux jika fungsinya:

a. kontinu, atau
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b. monoton.

14. Misalkan f didefinisikan pada I := [a, b] dan anggap bahwa f memenuhi kondisi Lipschitz
|f(z)—f(y)| < K|x—y|untuk semua z, y dalam I. Jika P,, adalah partisi I dengan membagi
I menjadi n bagian yang sama, tunjukkan bahwa U (f; P,,) — L(f; P,) < K(b —a)?/n.
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¥, 4 Barisan Fungsi

Dalam bab-bab sebelumnya, telah banyak digunakan barisan bilangan real. Dalam bab ini,
akan dipertimbangkan barisan yang suku-sukunya berupa fungsi dari bilangan real. Barisan
fungsi ini muncul secara alami dalam analisis real dan sering digunakan untuk mendekati su-
atu fungsi tertentu serta mendefinisikan fungsi baru berdasarkan fungsi yang telah diketahui.
Pada subbab 2.1, akan diperkenalkan dua jenis kekonvergenan untuk barisan fungsi, yaitu
konvergensi titik demi titik (pointwise convergence) dan konvergensi seragam (uniform con-
vergence). Konvergensi seragam dianggap lebih penting dan akan menjadi fokus utama. Hal
ini karena, seperti dijelaskan dalam subbab 2.2, sifat-sifat tertentu tetap dipertahankan dalam
konvergensi seragam. Dengan kata lain, jika setiap suku dalam suatu barisan fungsi yang
konvergen seragam memiliki sifat-sifat tersebut, maka fungsi limitnya juga memilikinya.

Konvergensi titik demi titik dan Konvergensi seragam

Misal A C R dan ditentukan bahwa untuk masing-masing n» € N ada fungsi f,, : A — R. Di
sini (f,,) dikatakan sebagai barisan fungsi dari A ke R. Jelas, masing-masing = € A, barisan
tersebut menghasilkan barisan bilangan real, yaitu

(fn(2))- (2.1)

Untuk = € A tertentu, barisan tersebut mungkin konvergen, dan untuk =z € A yang lain barisan
tersebut divergen. Pada umumnya, nilai dari limit, jika ada, akan bergantung pada pemilihan
titik z € A.

Misal (f,,) barisan fungsi dari A C R ke R, dan misal f fungsi dari 49 C R ke R.
Dikatakan barisan (f,,) konvergen pada A, ke f, jika untuk masing-masing = € A
barisan (f,(x)) konvergen ke f(z) di R. Dalam kasus ini f disebut limit pada A, dari
barisan (f,). Saat fungsi f ada, ( f,,) dikatakan konvergen pada A, atau ( f,,) konvergen
titik demi titik pada Ay. Ini dinotasikan dengan:

f =lim(f,) pada Ag atau f,, — f pada Ay.
Kadang-kadang, jika f,, dan f diberikan dalam bentuk rumus, dituliskan

f(z) =lim f,(z) untuk z € Ay, atau f,(z) — f(z) untuk z € A.

Biasanya, A dipilih sebagai himpunan terbesar yang mungkin sehingga semua = € A
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dengan barisan (2.1) konvergen dalam R.

f=lim(f,) pada Ay, atau f,— f pada A,.

(a) lim(z/n) = O untuk = € R.
Untuk n € N, misalkan f,(z) := z/n dan misalkan f(z) := 0 untuk x € R. Bisa
diamati bahwa untuk untuk = € R barisan ( f,,(z)) konvergen ke 0 dan oleh karena itu
barisan ( f,,) konvergen pada R ke f.

(b) lim(z").
Misalkan g, (z) := 2" untuk x € R, n € N. Jelas bahwa jika z = 1, maka barisan
(gn(1)) = (1) konvergen ke 1. Selanjutnya, lim(z") = 0 untuk 0 < z < 1, dan hal
ini juga berlaku untuk —1 < = < 0. Jika z = —1, maka g,(—1) = (—1)" dan terlihat
bahwa barisan ini divergen. Demikian pula, jika |z| > 1, maka barisan (z") tidak
terbatas, sehingga tidak konvergen dalam R.
Kita menyimpulkan bahwa jika

0, —-l<z<l,
g9(x) :=
1, z=1,

maka barisan (g,,) konvergen ke g pada himpunan (-1, 1].

(c) lim((2® + nz)/n) = z untuk = € R.
Misalkan h,,(z) := (2? + nx)/n untuk = € R, n € N, dan misalkan h(x) := z untuk
x € R. Karena h,(z) = (2°/n) + =, diperoleh bahwa h,,(z) — h(z) untuk semua
x € R, segingga barisan (h,,) konvergen ke h pada himpunan R.

(d) lim((1/n)sin(z +n)) = O untuk = € R.
Misalkan F,(z) := (1/n) sin(z+n) untuk € R, n € N, dan misalkan F(x) := 0 untuk
x € R. Karena | sin z| < 1 untuk semua z € R, didapat

sin(z + n)

|Fn(z) — F(2)| = (2.2)

1
n

<
n

untuk semua =z € R. Oleh karena itu, diperoleh bahwa lim(F,,(z)) = 0 = F(z) untuk
semua z € R. Sehingga barisan (F},) konvergen ke F' pada himpunan R.

Untuk menekankan kembali Definisi 2.1 dan untuk mempersiapkan metode yang penting
dalam konvergensi seragam. Berikut dirumuskan kembali Definisi 2.1 sebagai berikut.

Barisan fugsi (f,) dari A C R ke R konvergen ke suatu fungsi f : Ay — R pada A
jika dan hanya jika untuk setiap ¢ > 0 dan = € A\ ada bilangan asli K (e, z:) sedemikian
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sehingga jika n > K (e, x) maka

[fu(z) — f2)] <e.

Pembaca diajak untuk menunjukkan bahwa hal ini ekuivalen dengan Definisi 2.1. Perlu
ditekankan bahwa nilai K (e, ) bergantung pada  dan =. Dalam Contoh 2.1(a)-(c), terdapat
dua fakta penting: nilai K (¢, z) diperlukan untuk memperoleh ketaksamaan | f,,(z) — f(z)| < &
dengann > K (e, x). Intuisi di balik konvergensi titik demi titik adalah bahwa barisan tersebut
konvergen "cukup cepat" di beberapa titik dibandingkan di titik lain. Namun, dalam Contoh
2.1(d), seperti yang telah ditunjukkan dalam ketaksamaan (2.2), dimungkinkan untuk memilih
K yang bergantung hanya pada <. Sifat utama ini membedakan antara konvergensi titik demi
titik suatu barisan fungsi dan konsep konvergensi seragam.

pR Wl Konvergensi Seragam

Definisi 2.2
Barisan fugsi (f,,) dari A C R ke R konvergen seragam pada Ay, C A ke suatu fungsi

f :+ Ap — R jika dan hanya jika untuk setiap £ > 0 ada bilangan asli K(¢) sedemikian
sehingga jika n > K (¢) maka

|fn(z) — f(x)| < e, untuk semua x € A,.

Dalam kasus ini dikatakan barisan (f,,) konvergen seragam pada Ay. Ini dinotasikan
dengan:
fn =3 f pada Ay atau f,,(z) 3 f(z) untuk z € Ay.

Konsekuensi langsung dari definisi adalah jika barisan ( f,,) konvergen seragam pada Ay
ke f, maka barisan ini juga konvergen titik-demi-titik pada A, ke f dalam pengertian Definisi
2.1. Selanjutnya amati bahwa konversenya tidak selalu benar dan dapat dilihat melalui Contoh
2.1(a—c); contoh lain akan diberikan di bawah.

Kadang-kadang berguna untuk memiliki kondisi perlu dan cukup untuk barisan (f,,) agar
tidak konvergen seragam pada Ag ke f. Berikut diberikan mengenai hal tersebut yang meru-
pakan bentuk negasi dari Definisi 2.2.

Sebuah barisan fungsi ( f,,) dari Ay C R ke R tidak konvergen seragam pada A ke sebuah
fungsi f : Ay — R jika dan hanya jika terdapat <, > 0, sebuah subbarisan ( f,,, ) dari (f,),

Kistosil Fahim, Departemen Matematika Institute Teknologi Sepuluh Nopember



2.1. KONVERGENSI TITIK DEMI TITIK DAN KONVERGENSI SERAGAM 2. BARISAN FUNGSI

dan sebuah barisan (xy,) di Ay sehingga

| fr, () — f(xk)| > €0 untuk semua k € N.

Sekarang diberikan contoh bagaimana Lemma 2.2 dapat digunakan.

Contoh 2.2

(a) Perhatikan Contoh 2.1(a). Jika nj, := k dan z;, := k, maka

Jrp(@R) — flop) =1 — 0| =1.

Oleh karena itu, barisan ( f,,) tidak konvergen seragam pada R ke f.

1/k
(b) Perhatikan Contoh 2.1(b). Jika n;, := k dan z, := (;) , maka

1 ‘ 1
2

o (o) = @) = |5 =0

Oleh karena itu, barisan (g,,) tidak konvergen seragam pada (—1, 1] ke g.

(c) Pertimbangkan Contoh 2.1(c). Jika ny := k dan xj, := —k, maka h,, (z;) = 0 dan
h(xzy) = —k sehingga |hy,, (1) — h(zk)| = k. Oleh karena itu, barisan (h,,) tidak konver-
gen seragam pada R ke .

yRWA Norm Seragam

Dalam membahas konvergensi seragam, sering kali berguna menggunakan konsep norm ser-
agam pada himpunan fungsi terbatas.

Jika A C Rdan ¢ : A — R adalah fungsi, dikatakan bahwa ¢ terbatas pada A jika
himpunan ¢(A) adalah himpunan terbatas di R. Jika ¢ terbatas, didefinisikan norm
seragam dari ¢ pada A sebagai

lplla = supflp(x)] : = € A}.

Perhatikan bahwa ini berlaku jika K > 0, maka

lplla < K < |p(x)] < K untuk semuazx € A. (2.3)
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Misal (f,) adalah barisan fungsi-fungsi yang terbatas pada A C R. Barisan fungsi ini
konvergen seragam pada A ke f jika dan hanya jika || f,, — f||la — 0.

Bukti. (=) Jika (f,) konvergen seragam pada A ke f, maka dari Definisi 2.2, untuk setiap
e > 0, terdapat K (¢) sehingga jikan > K(c) dan 2z € A, maka

[fu(z) = f(z)] <e.

Dari definisi supremum, berlaku bahwa || f,, — f||4 < e untuk n > K (¢). Karena ¢ > 0 bersifat
sebarang, maka || f,, — f|la — 0.

(<) Jika || f, — flla — 0, maka untuk setiap ¢ > 0, terdapat bilangan bulat H (¢) sehingga
jikan > H(e) maka || f, — flla < ¢ dan dari (2.3) didapatkan bahwa | f,,(xz) — f(x)| < e untuk
semuan > H(e) dan z € A. Oleh karena itu, (f,,) konvergen seragam pada A ke f. [ |

Sekarang akan diilustrasikan penggunaan Lema 2.3 sebagai alat untuk memeriksa barisan
fungsi terbatas terhadap konvergensi seragam.

Contoh 2.3

(a) Lema 2.3 tidak dapat diterapkan pada barisan di Contoh 2.1(a) karena fungsi f,,(z) —
f(x) = z/n tidak terbatas pada R.
Sebagai ilustrasi, misalkan A := [0, 1]. Meskipun barisan (z/n) tidak konvergen ser-
agam pada R ke fungsi nol, akan ditunjukkan bahwa konvergensi ini adalah seragam
pada A. Untuk melihat ini, perhatikan bahwa

Ifn~ flla = sup{la/nl :0< o <1} =

Sehingga || f, — f||4 — 0. Oleh karena itu, ( f,,) konvergen seragam pada A ke f = 0.

(b) Misalkan g,,(z) := 2™ untukz € A :=[0,1]dann € N, serta g(x) := 0untuk0 < z < 1
dan g(1) := 1. Fungsi g, (z) — g(x) terbatas pada A dan

" untuk 0 <z <1,
lgn — glla = sup =1
0 untukz = 1.
Untuk setiap n € N. Karena ||g,, — g|| 4 tidak konvergen ke 0, maka bisa disimpulkan

bahwa barisan (g,,) tidak konvergen seragam pada A ke g.

(c) Lema 2.3 tidak dapat diterapkan pada barisan di Contoh 2.1(c) karena fungsi &, (z) —
h(z) = 2% /n tidak terbatas pada R.
Sebagai gantinya, misalkan A := [0, 8] dan perhatikan
|hn — hlla = sup{z?/n:0<z <8} = %4
Oleh karena itu, barisan (h,,) konvergen seragam pada A ke h = 0.
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(d) Jika merujuk pada Contoh 2.1(d), terlihat bahwa || F;, — F||gr < 1/n. Maka, (F,) kon-
vergen seragam pada R ke F.

(e) Misalkan G(z) := z"(1 — z) untuk = € A := [0,1]. Amati bahwa barisan (G, (z))
konvergen ke G(x) := 0 untuk setiap = € A. Untuk menghitung norm seragam dari
G, — G = G,, pada A, dicari turunan dan diselesaikan

G (x)=2"tn—-(n+1)z)=0

untuk mendapatkan titik z,, := n/(n + 1). Ini adalah titik interior dari [0, 1], dan mu-
dah diverifikasi menggunakan Uji Turunan Pertama bahwa G,, mencapai maksimum
pada [0, 1] di z,,. Oleh karena itu, diperoleh

1

IGalla = Ganlam) = (1+1/m) ™"

yang konvergen ke 0-¢~! = 0. Oleh karena itu konvergensi dari (G,,) adalah seragam
pada A.

Kriteria Cauchy untuk Konvergensi Seragam

Misalkan ( f,,) adalah suatu barisan fungsi-fungsi terbatas pada A C R. Barisan ini kon-
vergen seragam pada A ke fungsi terbatas f jika dan hanya jika untuk setiap ¢ > 0
terdapat suatu bilangan H (¢) dalam N sehingga untuk semua m,n > H(e), berlaku

Hfm - anA <e.

Bukti. (=) Jika f,, — f pada A, maka untuk setiap ¢ > 0 terdapat suatu bilangan bulat H (<)
sehingga jikan > H(e), maka ||f,, — f||a < &/2. Oleh karena ituy, jika m,n > H(e), maka

[fm (@) = fa(@)| < [fm(x) = f(@)] + | fal2) = f(2)] <e/2+e/2=¢

untuk semua x € A. Oleh karena itu, || f,, — fnlla < euntuk m,n > H(e).
(<) Sebaliknya, misalkan untuk ¢ > 0 terdapat H(s) sehingga jika m,n > H(c), maka
|| fm — fnlla < e. Dengan demikian, untuk setiap = € A, berlaku

[ fin(2) = fa(@)| < | fm — falla <& untukm,n > H(e). (2.4)

Didapat, (f,,(z)) adalah barisan Cauchy dalam R; oleh karena itu barisan tersebut adalah kon-
vergen. Didefinisikan f : A — R dengan

f(z) = nlLHgo fn(x) untuk z € A.
Jika diambil n — oo untuk (2.4), maka setiap = € A, berlaku

|fm(x) — f(x)| <e untukm > H(e).
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Oleh karena itu, barisan (f,,) konvergen seragam pada A ke f.

pREKE Latihan

© 0 ~N o

12

13.

14.

15.

16.

17.

18.
19.
20.

. Tunjukkan bahwa lim
. Hitung lim .
. Hitung lim 1

. Hitung li
ghmaT

. Tunjukkan bahwa lim % = 0 untuk semuaz € R,z > 0.
T n

L 0 untuk semua z € R.
14+ n2z2

"T untuk z € R,z > 0.

+ nx

l,n
untuk z € R,z > 0.

+an

sin(n) untuk z € R,z > 0.

nx

. Tunjukkan bahwa lim arctan(nz) = gsgn(az) untuk = € R.

. Hitung lime "™ untuk z € R,z > 0.

. Tunjukkan bahwa lim ze™"™* = O untuk z € R,z > 0.

. Tunjukkan bahwa lim z%¢™"* = 0 dan lim n?z%e ™" = O untuk z € R, z > 0.
10.
11.

Tunjukkan bahwa lim(cos(7x))*" ada untuk semua = € R. Berapa nilainya?

Tunjukkan bahwa jika « > 0, maka barisan pada Soal 1 konvergen secara seragam pada
interval [0, al, tetapi tidak konvergen secara seragam pada interval [0, co).

. Tunjukkan bahwa jika a > 0, maka barisan pada Soal 2 konvergen secara seragam pada

interval [a, 00), tetapi tidak konvergen secara seragam pada interval [0, co).

Tunjukkan bahwa jika a > 0, maka barisan pada Soal 3 konvergen secara seragam pada
interval [a, o), tetapi tidak konvergen secara seragam pada interval [0, co).

Tunjukkan bahwa jika 0 < b < 1, maka barisan pada Soal 4 konvergen secara seragam
pada interval [0, b], tetapi tidak konvergen secara seragam pada interval [0, 1].

Tunjukkan bahwa jika a > 0, maka barisan pada Soal 5 konvergen secara seragam pada
interval [a, c0), tetapi tidak konvergen secara seragam pada interval [0, co).

Tunjukkan bahwa jika a > 0, maka barisan pada Soal 6 konvergen secara seragam pada
interval [a, 00), tetapi tidak konvergen secara seragam pada interval [0, co).

Tunjukkan bahwa jika a > 0, maka barisan pada Soal 7 konvergen secara seragam pada
interval [a, c0), tetapi tidak konvergen secara seragam pada interval [0, co).

Tunjukkan bahwa barisan pada Soal 8 konvergen secara seragam pada [0, o).
Tunjukkan bahwa barisan z%¢~"* konvergen secara seragam pada [0, co).

Tunjukkan bahwa jika a > 0, maka barisan nz?e~"* konvergen secara seragam pada in-
terval [a, c0), tetapi tidak konvergen secara seragam pada interval [0, co).
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21. Tunjukkan bahwajika (f,,), (g, ) konvergen secara seragam pada himpunan A ke f, g, masing-
masing, maka (f,, + g, ) konvergen secara seragam pada A ke f + g.

22. Tunjukkan bahwa jika f,(z) := z + 1/n dan f(z) := x untuk = € R, maka (f,,) konvergen
secara seragam pada R ke f, tetapi barisan (f2) tidak konvergen secara seragam pada R.
(Dengan demikian, hasil kali dari barisan fungsi yang konvergen secara seragam mungkin
tidak konvergen secara seragam.)

23. Misalkan (f,,), (9») adalah barisan fungsi terbatas pada A yang masing-masing konvergen
secara seragam pada A ke f, g. Tunjukkan bahwa ( f,,g,,) konvergen secara seragam pada
Ake fg.

24. Misalkan (f,,) adalah barisan fungsi yang konvergen secara seragam ke f pada A dan
memenuhi | f,,(z)| < M untuk semuan € N dan semua z € A. Jika g kontinu pada interval
[— M, M], tunjukkan bahwa barisan (g o f,,) konvergen secara seragam ke g o f pada A.

V2l Pertukaran limit

Sering kali berguna untuk mengetahui apakah limit dari suatu barisan fungsi merupakan
fungsi kontinu, fungsi terdiferensialkan, atau fungsi yang dapat diintegralkan secara Riemann.
Sayangnya, tidak selalu terjadi bahwa limit dari suatu barisan fungsi memiliki sifat-sifat berguna
tersebut.

Contoh 2.4

(a) Misalkan g, (x) := 2" untuk = € [0, 1] dan n € N. Maka, seperti yang telah dicatat
dalam Contoh 2.1(b), barisan (g,,) konvergen pointwise ke fungsi:

0 untuk0 <z <1,
9(x) ==

1 untuk z = 1.

Meskipun semua fungsi g,, adalah kontinu di z = 1, fungsi limit ¢ tidak kontinu di
x = 1. Ingat bahwa telah ditunjukkan dalam Contoh 2.2(b) bahwa barisan ini tidak
konvergen secara seragam ke g pada [0, 1].

(b) Setiap fungsi g,,(x) := 2" dalam bagian (a) memiliki turunan kontinu pada [0, 1]. Na-
mun, fungsi limit g tidak memiliki turunan di = = 1, karena tidak kontinu di titik terse-
but.

(c) Misalkan f,, : [0,1] — R didefinisikan untuk n > 2 oleh:

n’x untuk 0 <z < 1/n,
fa(@) =4 —n?(x —2/n) untuk1/n <z <2/n,
0 untuk 2/n <z < 1.
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Jelas bahwa setiap fungsi f,, kontinu pada [0, 1]; sehingga dapat diintegralkan secara
Riemann. Baik melalui perhitungan langsung, atau dengan merujuk pada makna in-
tegral sebagai luas, diperoleh:

1
/ fo(@)dz =1 untukn > 2.
0

Pembaca dapat menunjukkan bahwa f,(z) — 0 untuk semua =z € [0, 1]; sehingga
fungsi limit f bernilai nol dan kontinu (dan karenanya dapat diintegralkan), dan:

1
/ f(z)dx = 0.
0
Oleh karena itu, didapat hasil:
1 1
/ f(z)dr =0 # lim/ fn(z)d.
0 0

(d) Diberikan barisan (h,,) yang didefinisikan oleh h,,(z) := 2nze " untuk z € [0, 1],
n € N. Karena h,, = H),, dengan H,(z) := —e‘mz, didapat

1
/ h(@)d = Hip(1) = Ho(0) = 1 — e™™.
0
Dapat dibuktikan bahwa h(z) := lim(h,(z)) = 0 untuk semua z € [0, 1] dan

/01 h(z)dx # lim /01 b (x)dzx.

Terlihat bahwa hipotesis tambahan berupa konvergensi seragam cukup untuk menjamin
bahwa limit dari barisan fungsi kontinu adalah kontinu. Hasil serupa juga akan dibuktikan
untuk barisan fungsi yang terdiferensialkan dan terintegralkan.

Teorema 2.2

Misal (f,,) barisan fungsi kontinu pada himpunan A C R. Jika (f,,) konvergen seragam
pada A ke fungsi f : A — R, maka f kontinu pada A.

Bukti. Misal ¢ sebarang bilangan real positif dan ¢ sebarang bilangan di A.

€ Karena (f,,) konvergen seragam pada A ke fungsi f : A — R, didapatkan H := H(g/3)
sedemikian sehingga jika n > H maka | f,,(z) — f(z)| < ¢/3 untuk semua = € A.

€ Karena f,, adalah fungsi kontinu pada A untuk semua n € N, didapatkan ¢,, = 5(%, ¢ fn)
sedemikian sehingga jika |x — ¢| < §,, dan z € A maka |f,,(z) — fn(c)| < /3.
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Oleh karena itu, ada ¢ := 6y = 6(%,(3, fm) sehingga jika | — ¢| < 6 dan z € A maka
[f(z) = flo)l < 1f(@) = fu(@)| + [fu(z) = fu(e)] +[fu(c) = f(c)]

< S4i4i-c
3 3 3 7

[ Catatan 2.1
Meskipun konvergensi seragam dari barisan fungsi kontinu cukup untuk menjamin kekontin-

uan fungsi limit, tapi itu bukan syarat perlu (lihat soal latihan pada subbab ini pada soal
nomer 2).

BB Pertukaran Limit dan Turunan

Sekarang ditunjukkan bahwa jika barisan turunan (f/) konvergen seragam pada interval J,
maka barisan ( f,,) konvergen seragam pada J ke fungsi f yang mempunyai turunan di setiap
titik di J dan f' = g.

Misal J C R interval terbatas dan misal ( f,,) barisan fungsi dari J ke R. Jika ada z( €
J sedemikian sehingga (f,.(zo)) konvergen dan barisan turunan (f,) pada J ada dan
konvergen seragam pada J ke fungsi g, maka barisan ( f,,) konvergen seragam pada .J
ke fungsi f yang mempunyai turunan di setiap titik di J dan f' = g.

Bukti. % Bukti (f,,) konvergen seragam pada A (misal lim(f,,) = f)
Misal a,b adalah titik-titik ujung dari interval J dengan « titik ujung kiri dan b titik ujung
kanan. Dengan menerapkan Teorema nilai rata-rata didapatkan bahwa untuk setiap = € J
ada y € J sehingga

Fin(@) = fa®@) = fin(20) = Fal20) + [f0a ) = F1 )] (@ = 20).

Karena (f,,(z0)) konvergen dan (f;,) konvergen seragam pada .J, didapatkan bahwa untuk
setiape > 0ada M := M(¢/(1 + (b — a))) sedmikian sehingga jika m,n > M maka

[fm(@) = fu(@)] < |fm(z0) = fulzo)| +

In) = Fa@)|le = o] < e.

Jadi (f,,) konvergen seragam pada A.
<¢ Bukti f fungsi kontinu

Karena f/ ada pada A untuk setiap n € N, didapatkan f,, kontinu untuk setiap n € N. Lebih
lanjut, karena ( f,,) konvergen seragam, diperoleh f kontinu.
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€ Bukti /'(c) ada untuk setiap c € J
Misal ¢ sebarang bilangan real. Lagi, gunakan Teorema nilai rata didapatkan bahwa untuk
setiap © € J ada z € J sehingga

fon@) = Fal@) = (€)= fale) + [f1n(2) = F2(2)] (& = ).
Untuk z # ¢, didapatkan
fm(x) = fm(c) _ fn(x) — ful(c)

r —C r—cC

= fm(2) = fa(2).
Karena (f/) konvergen seragam pada .J, didapatkan bahwa untuk setiap ¢ > 0 ada M :=

M (e) sedmikian sehingga jika m,n > M maka

k) = Fule) ki) = ule)

r —cC Tr —C

Ambil limit terhadap m dari ruas kiri dan kanan diperoleh

’f(:v) —fle)  falz) — fn(C)‘ ce (2.5)

r —cC r—cC

Selanjutnya, karena g(c) = lim(f/,(c)), ada N(e) € N sedemikian sehingga jika n > N(e),
maka

|[fale) = g(o)] <e. (2.6)

Sekarang, ambil K := max{M (¢), N(¢)}. Karena f (c) ada, didapat bahwa terdapat (¢) >
0 sedemikian sehingga jika 0 < |z — ¢| < dx(e), maka

K@K )] < 27)
Gabungkan (2.5), (2.6) dan (2.7) didapatkan
< ’f(xa): - f(c) B fK(xg); - fK(C)‘ n ‘fK(ﬂCa): - fK(C) _ f}((c)‘
+[fx(c) — g(o)]
< e

Sehingga f'(c) ada dan f'(c) = g(c).
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pAy Wl Pertukaran Limit dan Integral

Kita telah melihat pada Contoh 2.4(c) bahwa jika f,, adalah sebuah barisan fungsi di R|a, 0]
yang konvergen pada [a, b] menuju fungsi f € R]a, b], maka hal tersebut tidak selalu menjamin

bahwa )
/ f= / Jn:

Sekarang, akan ditunjukkan bahwa konvergensi seragam dari barisan tersebut cukup untuk
menjamin bahwa persamaan ini berlaku.

Teorema 2.4

Misal ( f,,) barisan fungsi di R[a,b]. Jika (f,,) konvergen seragam pada [a,b] ke f, maka
b b
f € Rla,b] dan memenuhi/ f= nlg]go/ I

b
Bukti. % Bukti / f» konvergen ke suatu bilangan, misal A

Berdasarkan kriteria Cauchy didapatkan bahwa untuk sebarang bilangan real positif ¢ ada
H (e) sedemikian sehingga jika m > n > H(c) maka

—& < fm(z) — fu(z) < cuntuk z € [a,b)].

Berdasarkan sifat ketaksamaan pada integral, diperoleh
b b
—e(b—a) < / fm —/ fn < e(b—a). untuk z € [a,b].

Oleh karena itu / fm) adalah barisan Cauchy di R, yang artinya konvergen ke suatu bi-

langan, misalkan A.

z‘:BuktifeR[ab]dan/ f=A=lim /bfn

Karena ( f,,) konvergen seragam pada [a, b] ke f, didapatkan K (¢) sedemikian sehingga jika
m > K(¢) maka

[fm(2) = fz)| <& (2.8)

untuk semua = € [a,b]. Jika P := {([z;_1,2:],t;)};_, sebarang partisi bertanda pada [a, b]
dan jika m > K (e), maka dengan menggunakan (2.8) didapat

1S(fmi P) = S(f:P)] = |

-
3

Ft)) (@i — i)
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Sekarang gunakan hasil bahwa barisan / fm) konvergen ke A, didapatkan ada M :
M (e) € N sedemikian sehlnggajlka m > M maka

— Al <e. (2.10)

Selanjutnya terapkan fakta f € R|a, b], didapatkan ada ¢,, . > 0 sedemikian sehingga jika
|P|| < 6m, maka

~S(fm:P)| < e (2.1)

Gabungkan (2.9), (2.10) dan (2.11), diperoleh §,,, . > 0 dengan m = max{K, M } sedemikian
sehingga jika || P|| < d,,- maka

SUP) = Al < ISUSP) = SUni P+ 1SUmi )~ [ i

< 3e.

Hipotesis konvergensi seragam merupakan syarat yang sangat ketat dan membatasi pen-
erapan hasil ini. Pada bagian ini, akan dikemukakan sebuah hasil yang tidak memenuhi kon-
vergensi seragam, tetapi mengharuskan fungsi limitnya dapat diintegralkan dalam pengertian
Riemann.

Misal ( f,,) barisan fungsi di R|a, b] yang konvergen pada [a, b] ke fungsi f € R|a,b]. Jika
ada B > 0 sedemikian sehingga |f,(z)| < B untuk semua = € [a,b] dan n € N, maka

memenuhi )
/ﬁ%%/ﬁ'

Bukti. Pembuktiannya sama seperti teorema pertukaran limit dan integral. Perbedaannya
terletak pada cara mendapatkan (2.10), yaitu dari asumsi bahwa ada B > 0 sedemikian se-

b
hingga |f,.(z)| < B untuk semua x € [a,b] dan n € N, didapatkan barisan (/ fm) terbatas

b
dan oleh karena itu terdapat sub-barisan (/ fr.,) yang konvergen misal konvergen ke A. Se-

a
lanjutnya untuk pertidaksamaan yang lain bisa didapatkan dengan cara yang sama seperti
teorema pertukaran limit dan integral. [ |

PV E Teorema Dini

Pada subbab ini akan diakhiri dengan sebuah teorema terkenal oleh Ulisse Dini (1845-1918).
Di sini pembuktian menggunakan gauge tidak konstan.
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L PR Teorem Dini

Jika (f,) barisan fungsi monoton kontinu pada I := [a,b] yang konvergen pada I ke
fungsi kontinu f, maka barisan tersebut kontinu seragam.

Bukti. Misalkan {f,} adalah barisan menurun dan g,, := f,, — f. Diperoleh {g,,} adalah
barisan fungsi kontinu yang menurun dan konvergen pada I ke fungsi 0. Akan ditunjukkan
bahwa konvergensi ini seragam pada /.

Diberikan ¢ > 0, ¢t € I, terdapat m;. € N sehingga 0 < g,,, .(z) < £/2. Karena g, .
kontinu di ¢, terdapat d;(¢) > 0 sehingga 0 < g,,, . (v) < € untuk semua z € I yang memenuhi
|z—t| < &;(<). Diperoleh ¢; adalah gauge pada I, dan jika ? = {([t;_1, ], ;) }?_, adalah partisi
bertanda o,-fine dan didefinisikan M, := max{my, .,...,my, - }. Jikam > M. danz € I, maka
(dengan Lemma gauges (Lihat Lemma 5.5.3 pada buku Bartles)) terdapat indeks i sehingga
|z — t;| < 4y, (e) dan oleh karena itu

0 < gm(z) < gmzi,e(x) <E.

Dengan demikian, barisan {g,, } konvergen secara seragam ke fungsi 0. [ |

- Latihan

1. Tunjukkan bahwa barisan z" /(1 + ") tidak konvergen seragam pada [0, 2], dengan menun-
jukkan bahwa fungsi limit tidak kontinu pada [0, 2].

2. Konstruksi sebuah barisan fungsi pada [0, 1] yang setiap elemennya tidak kontinu di setiap
titik [0, 1] tetapi konvergen seragam ke fungsi yang kontinu pada [0, 1].

3. Misalkan { f,,} adalah barisan fungsi kontinu pada interval I yang konvergen seragam pada
I ke fungsi f. Jika {x,,} C I konvergen ke z € I, tunjukkan bahwa lim f,,(z,,) = f(x¢).

4. Misalkan f : R — R kontinu seragam pada R dan f,,(z) := f(z + 1/n) untuk z € R.
Tunjukkan bahwa { f,,} konvergen seragam pada R ke f.

5. Misalkan f,,(z) := 1/(1 + ™) untuk = € [0, 1]. Temukan limit titik demi titik f dari barisan
{f»} pada [0, 1]. Apakah { f,,} konvergen seragam ke f pada [0, 1]?

6. Misalkan barisan { f,,} konvergen seragam ke f pada himpunan A, dan setiap f,, terbatas
pada A. Tunjukkan bahwa fungsi f terbatas pada A.

7. Misalkan £, (z) := nz/(1 + nz?) untuk = € A := [0, c0). Tunjukkan bahwa {f,,} konvergen
tidak seragam ke fungsi terintegral f pada A, tetapi limit titik demi titik dari barisan tidak
terbatas pada A.

8. Misal f,(z) = 2"/n untuk = € [0,1]. Tunjukkan bahwa barisan fungsi yang dapat ditu-
runkan f, konvergen seragam ke fungsi yang dapat diturunkan f pada [0, 1] dan bahwa
barisan (f/,) pada [0, 1] konvergen ke fungsi g, tetapi g(1) # f'(1).

9. Misalkan g,,(z) := ¢~ "* untuk = > 0,n € N. Periksa hubungan antara lim g, (x) dan lim g/,.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Misalkan I := [a,b] dan {f,} adalah barisan fungsi kontinu pada I yang konvergen pada
I ke f. Misalkan turunan f/ kontinu pada I dan {f/} konvergen seragam ke g. Tunjukkan

bahwa f(z) — f(a) = / g(t) dt dan bahwa f'(x) = g(z) untuk semua z € I.

a

Tunjukkan bahwa / e~ dz = 0 untuk semua n € N.
0

Jika a > 0, tunjukkan bahwa lim / Sm(m)dm = 0. Apa yang terjadi jika a = 0?
n—oo J, (nw)z
Misalkan f,(z) := nx/(1 + nz) untuk = € [0, 1]. Tunjukkan bahwa { f,,} konvergen tidak
1 1
seragam ke fungsi terintegral f pada [0, 1] dan bahwa/ f(z)dx = li_>m / fn(x)d.
0 n o0 0

Misalkan g, (z) := nz(1 — x)" untuk =z € [0,1],n € N. Diskusikan konvergensi {g,} dan

1
/ gn(z)dz.

0
Misalkan f,, adalah enumerasi bilangan rasional di I := [0, 1] dan misalkan f,, didefinisikan
menjadi 1 jika z = rq,7r9,...,r, dan sama dengan 0 di tempat lain. Tunjukkan bahwa f

adalah fungsi terintegral Riemann untuk setiap n € N, bahwa {f1(z) < fa(z) < ---}, dan
bahwa f(z) := nh~>nolo f»(z) adalah fungsi Dirichlet yang tidak terintegral Riemann pada [0, 1].
Misalkan f,,(z) := 1 untuk = € (0,1/n) dan f,,(z) := 0 untuk = lainnya di [0, 1]. Tunjukkan
bahwa { f,,} adalah barisan fungsi menurun tidak kontinu yang konvergen ke fungsi kontinu
tetapi tidak seragam pada [0, 1].

Misalkan f,(z) := 2™ untuk = € [0,1],n € N. Tunjukkan bahwa { f,,} adalah barisan fungsi
kontinu yang menurun ke fungsi kontinu, tetapi konvergensinya tidak seragam pada [0, 1].

Misalkan f,(z) := z/n untuk € [0,00),n € N. Tunjukkan bahwa {f,,} adalah barisan
fungsi kontinu yang menurun ke fungsi limit kontinu, tetapi konvergensinya tidak seragam
pada [0, o0).

Berikan contoh barisan menurun {f,,} dari fungsi kontinu pada [0, 1] yang konvergen ke
fungsi kontinu, tetapi konvergensinya tidak seragam pada [0, 1].
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3¥1: 3] Deret Tak Hingga

KB Konvergen Mutlak

DIRNICECH N Deret Tak Hingga

Jika X := (z,,) suatu barisan di R, maka deret tak hingga (atau disederhanakan deret)
dibangun oleh X adalah barisan S := (s;) yang didefinisikan oleh

S1 = X1
Sg = S1+x2(=x1+x2)
Sg = Sp_1t+wk(=x1+T2+ -+ T8)

Bilangan z,, disebut suku-suku deret tersebut, dan bilangan s, disebut jumlah parsial
deret tersebut. Jika lim S ada, kita katakan bahwa deret ini konvergen dan menyebut
limit ini sebagai jumlah atau nilai deret tersebut. Jika limit ini tidak ada, maka deret S
dikatakan divergen.

BISMICTICVA Konvergen Mutlak dan Konvergen Bersyarat

Misal X := (x,) suatu barisan di R. Dikatakan bahwa deret Z x,, konvergen mutlak jika
deret Z |z,,| konvergen di R. Deret dikatakan konvergen bersyarat (atau tidak mutlak)
jika konvergen, tetapi tidak konvergen mutlak.

Konvergen Mutlak dan Konvergen Bersyarat
Jika deret Z x,, di R konvergen mutlak, maka Z x,, juga konvergen.

Bukti. Karena Z |z,,| konvergen, diperoleh Z |z,,| adalah barisan Cauchy dan oleh karena
itu untuk setiap ¢ > 0 ada M(e) € N sedemikian sehingga jika m > n > M/(e), maka

[Tt ] + |Tna2| + -+ om| <e.
Kemudian berdasarkan ketaksamaan segitiga, diperoleh

|Sm — sn| = |[Tng1 + Tnyo + -+ Tn| < |Tpga] + [Tpg2| + -+ |2m] <,

n
dengan s, = ) ;. Oleh karena itu » _ ,, konvergen. n
=1
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KRARE Pengelompokan

Diberikan suatu deret Z x,,. Dapat dikonstruksi deret Z yx. lainnya dengan membiarkan uru-
tan suku z,, dan menyisipkan tanda kurung yang mengelompokkan sejumlah suku berhingga.
Sebagai contoh perhatikan pengelompokan deret harmonik berganti tanda berikut

] 1+(1 1>+<1 1+1> 1+<1 +1)
2 3 4 5 6 7 8 9 13

Fakta menariknya adalah pengelompokan seperti itu tidak mempengaruhi konvergensi dan
nilai konvergennya.

LECCUERCWAE Pengelompokan Deret

Jika deret Z x,, konvergen, maka setiap deret yang diperoleh dari deret tersebut dengan
melakukan pengelompokan juga konvergen dan nilai konvergensinya sama.

Jelas bahwa kebalikan dari teorema ini tidak benar. Misal pengelompokan deret berganti
tanda ) "(—1)" diberikan oleh

1-D+1-D+(1—1)+-.

Bisa diamati pengelompokan tersebut konvergen, tetapi deret Z(—l)” divergen.

Bukti. Misal deret Zyn adalah deret yang diperoleh dari deret an dengan melakukan
pengelompokan. Dengan demikian bisa dituliskan

y1::x1+~'+5€k;, y212$k1+1+"'+xk27'”

dengan1 < ky < ko < k3 < --- . Jika s,, menyatakan jumlahan parsial ke-n dari sz dan
menyatakan jumlahan parsial ke-% dari Z y;, maka diperoeh

11 =Yy1 = Skys Lo = Y1 T Y2 = Sky, "+

Oleh karena itu barisan (t¢,,) merupakan sub-barisan dari (s,,). Karena (s,,) konvergen, diper-
oleh barisan (¢,,) juga konvergen dan nilai konvergensinya sama. [ |

Penyusunan Ulang Deret

eret Zyn di R adalah penyusunan ulang dari deret an jika ada fungsi bijektif f :
N — N sedemikian sehingga y;, = x ¢(;;) untuk semua k € N.

Sederhananya, “penyusunan ulang” suatu deret Z:cn adalah deret lain yang diperoleh
dari deret an dengan menggunakan semua suku tepat satu kali tetapi mengacak urutan
pengambilan sukunya.
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Jika an merupakan deret konvergen bersyarat di R, dan jika ¢ sebarang bilangan real,
maka terdapat penyusunan ulang yang konvergen ke c. Untuk membuktikan pernyataan ini,
pertama-tama kita perhatikan bahwa suatu deret konvergen bersyarat harus mengandung
suku-suku positif yang sebanyak tak terhingga dan suku-suku negatifnya juga sebanyak tak
terhingga, dan baik deret suku-suku positif maupun deret suku-suku negatifnya divergen. Un-
tuk membuat suatu deret yang konvergen ke ¢, diambil suku-suku positif sampai jumlah par-
sialnya lebih besar dari ¢, lalu diambil suku-suku negatifnya sampai jumlah parsialnya kurang
dari c. Lakukan ini seterusnya, sehingga didapat deret yang konvergen ke-c.

kKB WA Penyusunan Ulang Deret

Teorema 3.3

Jika Z x,, adalah deret yang konvergen mutlak di R dan an konvergen ke x maka
sebarang penyusunan ulang Z Y dari Z x,, konvergen ke x.

Bukti. Misal Z x,, adalah deret yang konvergen mutlak di R dan Z x,, konvergen ke z. Oleh
karena itu, untuk sebarang ¢ > 0, ada N € N sedemikian sehingga jika n,q > N dan s, :=

x1 + -+ + x,, maka
q

|z — sp| < edan Z lzg| < e.
k=N+1

Misal M € N sedemikian sehingga semua suku zy, - - -,z termuat dalamjumlahan {y., y2, -,y
Perhatikan bahwa jika m > M dan ¢, := y1 + - - - + y,n, maka ada ¢ > N sehingga z1,--- , 2,
danyi,--- ,y, termuat dalam {z1,--- , z,} sehingga

q
|z —tm| < |z —sp|+ [sn —tm] < |z—sp|+ Z |zK| <e+e=2e.
k=N+1

KR WH Latihan

1. Tunjukkan bahwa jika suatu deret konvergen hanya memuat sejumlah suku negatif yang
berhingga, maka deret tersebut konvergen mutlak.

2. Tunjukkan bahwa jika suatu deret konvergen bersyarat, maka deret yang diperoleh dari
suku-suku positifnya adalah divergen, dan deret yang diperoleh dari suku-suku negatifnya
adalah divergen.

3. Jika Z a, konvergen bersyarat, berikan argumen untuk menunjukkan bahwa terdapat penyusuna
ulang yang jumlah parsialnya divergen ke oc.

4. Jika Z a,, konvergen mutlak dan (b,,) barisan terbatas, tunjukkan bahwa Z an by, konver-
gen mutlak.
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5. Jika (a,,) adalah barisan turun dari bilangan real positif dan jika Z a,, konvergen, tunjukkan
bahwa lim(na,) = 0.

KBl Uji Banding

Misal X := (z,,) dan'Y = (y,) barisan bilangan real dan ditentukan bahwa untuk K € N
didapatkan

0 <z, <yn, untukn > K.

(a) Jika deret Z yn konvergen, maka deret Z x,, juga konvergen.
(b) Jika deret > " x,, divergen, maka deret >y, juga divergen.

Bukti. Di sini hanya dibuktikan bagian (a), karena (b) kontrapositif dari (a). Misal deret Z Un
konvergen dan diberikan £ > 0. Berdasarkan kriteria Cauchy untuk deret, diperoleh bahwa
ada M (e) > 0 sedemikian hingga jika m > n > M/(e), maka

Yn+1+ -+ Ym <€
Jika n > sup{ K, M(¢)}, maka didapat
O0<Zpt1+ - +Tm SYnt1+ -+ ym <&,

yang artinya deret Z x, konvergen. [ |

kA Uji Banding Limit

isal X := (x,) dan'Y = (y,,) barisan real tak-nol dan ditentukan bahwa limit di bawah ini
ada di R:

T,

Yn

r:= lim

(3.1)

(a) Jika r # 0, maka Z x,, konvergen mutlak jika dan hanya jika Z yn konvergen mutlak.
(b) Jika r = 0 dan >y, konvergen mutlak maka  _ x,, konvergen mutlak.

Bukti. (a) Misal r # 0. Berdasarkan (3.1) diperoleh bahwa ada K € N sedemikian sehingga
%r < lznl/lunl < ;r untuk n > K. Akibatnya didapatkan ~rly,| < |zn| < gr]ynL untuk
n > K. Dengan menggunakan uji banding, sehingga didapatkan (a).
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(b) Sekarang, misal » = 0. Dengan menggunakan (3.1) diperoleh bahwa ada K € N sedemikian
sehingga 0 < |z,|/|yn| < 1 untuk n > K. Hal ini berimplikasi bahwa 0 < |z,,| < |y,|, untuk
n > K. Lagi, gunakan uji banding, sehingga didapatkan (b). [

Dengan menggunakan uji banding limit, periksa kekonvergenan deret:

>

1
n2’

cWk] Uji Akar

Misal X = (x,,) barisan di R.

(a) Jika ada r € Rdengan r < 1 dan K € N sedemikian sehingga
\xn\l/” <r, untukn>K, (3.2

maka deret Z x,, konvergen mutlak.
(b) Jika ada K € N sedemikian sehingga

lzn|/™ > 1, untukn > K, (3.3)

maka deret ) " z,, divergen.

Bukti. Bukti: (a) Berdasarkan (3.2) diperoleh |z,| < ™ untuk n > K. Dengan menggunakan
Uji Banding dan dengan menggunakan fakta bahwa deret geometri Zr” konvergen, dida-
patkan deret an konvergen. (b) Dari (3.3) didapatkan |z,| > 1 untuk n > K. Dengan
menerapkan Uji Banding dan menggunakan fakta bahwa deret Z 1 divergen, diperoleh deret
> a, divergen. [

Akibat 3.1

Misal X = (z,,) barisan di R dan ditentukan

7= lim |z, |7 (3.4)

ada di R. Didapatkan bahwa an konvergen mutlak saat » < 1 dan divergen saat
r > 1.

[ Catatan 3.1
Jika r = 1, maka deret mungkin konvergen ataupun divergen, sehingga perlu uji yang lain.
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Bukti. Bukti: Jika limit di (3.4) ada dan » < 1 maka untuk ¢ > 0 ada K € N sedemikian
sehingga |z,|'/" < r + ¢ untuk n > K. Berdasarkan sifat kepadatan bilangan real, diperoleh
r1 € R sehingga r < r; < 1. Sekarang pilih ¢ = 1 — r, didapatkan |xn|1/” < ryuntukn > K.
Dengan menerapkan Teorema Uji Akar (a), bisa disimpulkan deret Z x,, konvergen.

Lebih lanjut jika limit di (3.4) ada danr» > 1 maka untuke > 0 ada K € N sedemikian sehingga
lz,|'/™ > r — e untuk n > K. Berdasarkan sifat kepadatan bilangan real, diperoleh r; € R
sehingga 1 < r; < r. Sekarang pilih e = r — r, didapatkan ]xnll/” > 7y > luntukn > K.
Dengan menerapkan Teorema Uji Akar (b), bisa disimpulkan deret Z x,, divergen. [

Dengan menggunakan uji akar, periksa kekonvergenan deret:

1
> —, untuk p > 0.
np

kW XM Uji Rasio

Misal X = (x,) barisan tak-nol di R.

(a) Jika ada r € Rdengan 0 < r < 1 dan K € N sedemikian sehingga

Tn+1
Tn

<r, untukn>K, (3.5)

maka deret Z x,, konvergen mutlak.

(b) Jika ada K € N sedemikian sehingga

Tn+1
In

., untukn > K, (3.6)

>1

maka deret > " x,, divergen.

Bukti. (a) Jika (3.5) terpenuhi untuk 0 < r < 1, maka diperoleh |z .| < |xx|r™ untuk
m € N. Dengan menggunakan Uji Banding dan dengan menggunakan fakta bahwa deret
geometri Z |z |r™ konvergen, didapatkan deret an konvergen. (b) Jika (3.6) terpenuhi,
maka diperoleh |z 1,,| > |z x| untuk m € N. Dengan menggunakan Uji Banding dan dengan
menggunakan fakta bahwa deret Z |z | divergen, didapatkan deret an divergen. [ |

Misal X = (z,) barisan tak-nol di R dan ditentukan

Tn+1
Tn

(3.7)

r = lim
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ada di R. Didapatkan bahwa an konvergen mutlak saat » < 1 dan divergen saat
r > 1.

[Z° Catatan 3.2
Jika » = 1, maka deret mungkin konvergen ataupun divergen, sehingga perlu uji yang lain.

Bukti. Jika limit di (3.7) ada dan » < 1 maka untuk ¢ > 0 ada K € N sedemikian sehingga
|Zp+1/xn| < r+euntuk n > K. Berdasarkan sifat kepadatan bilangan real, diperoleh r; € R
sehingga r < r; < 1. Sekarang pilih ¢ = r; — r, didapatkan |z, +1/z,| < r; untuk n > K.
Dengan menerapkan Teorema Uji Rasio (a), bisa disimpulkan deret an konvergen. Lebih
lanjut jika limit di (3.7) ada dan » > 1 maka untuk ¢ > 0 ada K € N sedemikian sehingga
|Zp+1/xn| > r — e untuk n > K. Berdasarkan sifat kepadatan bilangan real, diperoleh r; € R
sehingga 1 < r; < r. Sekarang pilih ¢ = » — rq, didapatkan |z,+1/z,| > r1 > Luntuk n > K.
Dengan menerapkan Teorema Uji Rasio (b), bisa disimpulkan deret Z x,, divergen. [ |

Dengan menggunakan uji rasio, periksa kekonvergenan deret:

1
> —, untuk p > 0.
npP

kWA Uji Integral
b
Jika f di R[a,b] untuk setiap b > « dan jika blim / f(t) dt ada di R, maka integral tak wajar
—00 J g
00 b
didefinisikan oleh / F(t) dt = lim / (b dt.

b—o0
Teorema 3.8

Misalkan f adalah fungsi positif dan menurun pada {t : t > 1}. Maka deret Z f(k)
k=1

konvergen jika dan hanya jika integral tak wajar

[ s

1

ada. Lebih lanjut, jumlahan parsial s, = > f(k) dan jumlahan s = > f(k) memenuhi
k=1 k=1

/:O f(t)dtSs—sns/oof(t)dt-

+1 n
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Bukti. Karena f fungsi positif dan menurun pada interval [k — 1, k|, diperoleh

F(k) < kklf(t) dt < f(k — 1), (3.8)

Dengan menambahkan pertidaksamaan ini untuk k£ = 2,3, - -- , n, didapatkan

st < [ " F(t) dt < s,

yang menunjukkan bahwa kedua limit di bawah ini ada atau tidak ada:

lim s,, lim f(t) dt.

n—oo n—o0 1

Lebih lanjut, jika kedua limit di atas ada, maka dengan menambahkan pertidaksamaan (3.8)
untuk £ =n +1,--- ,m, diperoleh

m
Sm — Sp < / f(t) dt < spm—1— Sn—1
n

m—+1 m
dan juga didapatkan / ft) dt < sy — sp < / f(t) dt. Ambil m — oo, diperoleh
n+1 n
PO dt < s— s, < / £(t) dt. m
n+1 n

Dengan menggunakan uji integral, periksa kekonvergenan deret:

1
> —, untuk p > 0.
npP

kXY Uji Raabe

isal X = (x,) barisan tak-nol di R.

1. Jika ada a > 1 dan K € N sedemikian sehingga

Tn41
In

a
<1-2
n

untuk n > K, (3.9)

maka deret Z x,, konvergen mutlak.
2. Jika ada bilangan real a < 1 dan K € N sedemikian sehingga

Tn+1
TIn

a
>1-2
n

untuk n > K, (3.10)

Y

maka deret Z x,, tidak konvergen mutlak.
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Bukti. (a) Jika (3.9) terpenuhi, maka didapatkan
klrgiq] < (k—1)|zg] — (a — 1)|zg|, untuk & > K
yang ekivalen dengan
(k —1)|zk| — klzgs1] > (@ — 1)|zg] > 0, untuk k& > K. (3.11)
Tambahkan (3.11) untuk £ = K, - - - , n, didapatkan
(K = D|zg| =2 (K = D|zk| = nfznia| = (@ = D(Jzx| + - + |2zal).

Ini menunjukkan bahwa jumlahan parsial dari deret Z |z,,| terbpada dan didapatkan deret
>y, konvergen mutlak.
(b) Jika (3.10) terpenuhi, maka karena a < 1, diperoleh

n|Tp+1| > (n—a)|z,| > (n —1)|zy|, untukn > K.

Dengan induksi didapatkan n|z,, 1| > (K — 1)|zx| := ¢, untuk semua n > K. Tetapi deret
harmonik Z 1/n divergen, sehingga berdasarkan uji banding didapat deret Z |z,,| divergen.
[

Akibat 3.3

Misal X = (x,) barisan tak-nol di R dan ditentukan

S (n (1 - )) (3.12)

ada di R. Didapatkan bahwa an konvergen mutlak saat a > 1 dan tidak konvergen
mutlak saat a < 1.

Tn+1
T,

[ Catatan 3.3
ika a = 1, maka deret mungkin konvergen ataupun divergen, sehingga perlu uji yang lain.

Bukti. Jika limit di (3.12) ada dan @ > 1 maka untuk ¢ > 0 ada K € N sedemikian sehingga
n(l — |zp41/2n|) > a — e untuk n > K. Berdasarkan sifat kepadatan bilangan real, diperoleh
r1 € R sehingga 1 < a; < a. Sekarang pilih ¢ = a — ay, didapatkan |z,,11/2z,| < 1 — (a1/n).
Dengan menggunakan Teorema Uji Raabe (a), didapatkan Z x,, konvergen. Selanjutnya, jika
a < 1 maka untuk ¢ > 0 ada K € N sedemikian sehingga n(1 — |z,+1/%,|) < a + € untuk
n > K. Berdasarkan sifat kepadatan bilangan real, diperoleh a¢; € R sehingga a < a; <
1. Sekarang pilih ¢ = r — r, didapatkan |z, +1/x,| > 1 — (a1/n) untuk n > K. Dengan
menerapkan Teorema Uji Raabe (b), bisa disimpulkan deret Z x,, divergen. [ |

Kistosil Fahim, Departemen Matematika Institute Teknologi Sepuluh Nopember



3.3. DERET FUNGSI 3. DERET TAK HINGGA

engan menggunakan uji Raabe, periksa kekonvergenan deret:

1 n
—, untuk p > 0 dan —_
an’ p Zn2+1

K@ Latihan

1. Jika Z a, merupakan deret konvergen mutlak, maka deret Z ay, sin nx konvergen mutlak
dan seragam.

2. Misalkan (¢, ) adalah barisan bilangan positif yang menurun. Jika ch sin nx konvergen
seragam, maka lim(ne,,) = 0.

3. Tunjukkan bahwa jari-jari konvergensi R dari deret pangkat Z anx" diberikan oleh lim(|a,, /an+1])
saat limit ini ada. Berikan contoh deret pangkat yang limitnya tidak ada.

4. Jika 0 < p <la,| < guntuk semua n € N, dapatkan radius konvergensi dari deret Z anx”.

5. Misal f(z) = Zanx” untuk |z| < R. Jika f(z) = f(—z) untuk semua |z| < R, tunjukkan
bahwa a,, = 0 untuk semua n yang ganijil.

KICJl Deret Fungsi

BISIIETICR Deret Fungsi dan Konvergensi

Jika (f,,) barisan fungsi yang didefinisikan pada D C R dengan nilai di R, barisan jum-
lahan parsial s,, dari deret tak-hingga Z fn yang didefinisikan untuk z € D dengan

si(z) = fi(x),
sa(z) = s1(2)+ fo(@),

snt1(z) = sn(@) + frs1(@)

Jika barisan fungsi (s,,) konvergen pada D ke fungsi f, maka barisan tak-hingga Z fn
dikatakan konvergen ke f pada D. Di sini, jika nilai limit dari deret an ada, nilainya

dinotasikan sebagai » _ f,.

n=1

Jika deret Z | fn(x)| konvergen untuk setiap = € D, maka deret Z fn disebut konvergen
mutlalk pada D. Jika barisan (s, ) dari jumlahan parsial konvergen seragam ke f pada D,
maka Z fn disebut konvergen seragam pada D.
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LCCICUEICR U Deret Fungsi Kontinu

Jika fungsi f,, bernilai real dan kontinu pada D C R untuk setiap n € N dan jika Z fn
konvergen seragam ke f pada D, maka f kontinu pada D.

LG CUEIR Y Deret Fungsi Terintegral Riemann

Diberikan fungsi f,, bernilai real dan terintegral Riemann pada interval J := [a,b] untuk
n € N. Jika deret Z fn konvergen seragam ke f pada J, maka f terintegral Riemann

dan , ) o o
/sz/anglfnzz fo-

n=179%

LCEGENEIB VAR Deret Fungsi Yang Dapat Diturunkan

Untuk masing-masing n € N, misalkan f,, fungsi bernilai real pada .J := [a, b] yang mem-
punyai turunan f/, pada J. Jika deret Z fn konvergen paling sedikit di satu titik pada J
dan bahwa deret Z f1, konvergen seragam pada .J, maka ada fungsi bernilai real f pada
J sedemikian sehingga Z fn konvergen seragam pada J ke f. Lebih lanjut, f mempun-
yai turunan pada J and f' = f/.

kIR Uji Konvergensi Seragam

LG CUEICR KR Kriteria Cauchy

Misal (f,,) barisan fungsi bernilai real pada D C R. Deret Z fn konvergensi seragam
pada D jika dan hanya jika untuk setiap ¢ > 0 ada M () € N sedemikian sehingga jika
m >mn > M(e), maka

| fat1(z) + -+ fin(x)] < &, untuk semua = € D.

LCCICUEICRE Uji-M Weierstrass

Misal (M,,) barisan bilangan real positif sedemikian sehingga |f,,(x)| < M,, untuk x € D
and n € N. Jika deret Z M, konvergen, maka Z fn konvergen seragam pada D.

Bukti. Karena deret Z M, konvergen dan berdasarkan kriteria Cauchy, didapatkan bahwa
ada M = M (e) sedemikian sehingga jika m > n > M, maka

Myi1+ -4+ My, <euntukz € D.

Lebih lanjut, karena | f,,(z)| < M,, untuk z € D andn € N, diperoleh |f,, 1 () + -+ fi(z)] <
e untuk = € D yang artinya » _ f,, konvergen seragam pada D. [
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DISNISICRM Deret Pangkat Sekitar z = ¢

Deret fungsi bernilai real Z fn dikatakan deret pangkat di sekitar = = ¢ jika fungsi f,
mempunyai bentuk

fu(x) = ap(z — )",
dengana, dancdiRdann =0,1,2,---.

PIELISICA Radius Konvergensi

Misal Zanx" deret pangkat. Jika barisan |an\1/" terbatas, maka didefinisikan p :=
lim sup(|a,|'/™). Sebaliknya jika barisan |a,|'/™ tidak terbatas maka didefinisikan p :=
+o0. Didefinisikan radius konvergensi dari Z anx" diberikan oleh

0 if p = +o0,
R:=9 1/p if0<p<+oo,
+00 if p=0.

Lebih lanjut interval konvergensi diberikan oleh (—R, R).

IS | imit Superior

Misal X = (z,,) barisan bilangan reall terbatas. Limit superior dari barisan (z,,) adalah
infimum dari himpunan

V = {v € R : ada paling banyak sejumlah hingga n» € N sehingga v < z,}.

Akibat 3.4

Misal X = (z,,) barisan bilangan real tak-negatif terbatas. Limit superior dari barisan
(x,,) adalah infimum dari himpunan

V. = {veR:z, <vuntuk semua n yang cukup besar}

= {veR: ada M € N sehingga z,, < v, untuk semuan > M}.

Berikut fakta yang diperlukan:

€ Jika v > lim sup(z,,), maka ada M € N sehingga z,, < v untuk semua n > M.

€ Jika w < lim sup(z,,), maka ada M € N sehingga z,, > w untuk semua n > M.

LCEGENEIRBEI Teorema Cauchy-Hadamard

Jika R adalah radius konvergensi dari deret pangkat Z anx", maka deret tersebut kon-
vergen absolut jika |z| < R dan divergen jika |x| > R.
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Bukti:

Bukti. ¢ Kasus 0 < R < oo

% Jika 0 < |z| < R, maka ada bilangan positif ¢ < 1 sedemikian sehingga |z| < cR. Oleh
karena itu p < ¢/|| dan berimplikasi bahwa ada M e N sehingga |a,,|'/™ < ¢/|x|, untuk
semua n > M. Ini ekivalen ke pernyataan bahwa

lanz™| < "

untuk semua n > M. Karena ¢ < 1, maka deret Zc" konvergen. Dengan menerapkan
Uji Banding didapatkan deret Z anx" konvergen mutlak.
& Jika |z| > R = 1/p,makaada M < Nsehingga |a,|*/™ > 1/|z| untuk semuan > M. Oleh

karena itu, |a,2"| > 1 untuk semua n > M, sehingga deret Z a,x" tidak konvergen.

¢ Kasus R = 0 atau p = lim sup(|a,|"/") = 400
Jika p = lim sup(|an,|"/™) = +o0, maka lim sup(|a,|*/™) > r untuk setiap » > 0. Oleh karena
itu untuk setiap r > 0 ada M, € N sehingga |an|1/” > runtuk semua n > M,. Untuk = # 0,
ambil » = 1/|x| dan didapatkan M € N sehingga |a,,z"| > 1 untuk semua n > M. Karena
Z 1 divergen didapat deret Z |an2z™| juga divergen untuk semua |z| > 0.

€ Kasus R = +oo atau p = limsup(|a,|"/") =0
Jika lim sup(|a,|'/™) = 0, maka untuk setiap ¢ > 0 ada M < N sehingga sup |a,|

n>m

1/n<6

untuk semua m > M. Ini artinya yamyl/m < e untuk semua m > M. Sekarang ambil

e = ¢/|z| dengan x # 0dan 0 < ¢ < 1, sehingga diperoleh |a,,z™| < ¢™ untuk semua
m > M. Ini ekivalen ke pernyataan bahwa

lapx™| < ™

untuk semua n > M. Karena ¢ < 1, maka deret Z ¢" konvergen. Dengan menerapkan Uji
Banding didapatkan deret Z a,x" konvergen mutlak.
[ |

LCENERB TR Deret Pangkat Konvergen Seragam

Misal R adalah radius konvergensi dari deret pangkat Z apx”. Jika K adalah interval
tertutup terbatas yang termuat pada interval konvergensi (—R, R), maka deret pangkat
konvergen seragam pada K.

Bukti. $¢ Kasus 0 < R < oo
Karena K adalah interval tertutup terbatas pada interval (— R, R), didapatkan bahwa ada
a,b € (=R, R) sehingga K = [a,b]. Lebih lanjut, juga didapatkan —R < —@Q < a dan
b < @ < Rdengan @ = max{]al,|b|} < a. Oleh karena itu, |z| < @ untuk setiap z € K
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dengan Q < R. Itu artinya, |z| < cR untuk setiap x € K dengan 0 < ¢ = /R < 1. Dengan
demikian p < ¢/|z| dan berimplikasi bahwa ada M e N sehingga |a,|'/" < ¢/|z|, untuk
semua n > M. Ini ekivalen ke pernyataan bahwa

lanz™| < "

untuk semuan > M. Karena 0 < ¢ < 1, maka deret Z c" konvergen. Dengan menerapkan
uji-M Weierstrass didapatkan deret Z a,z" konvergen seragam.
e Kasus R=0
Tidak ada yang perlu dibuktikan, karena tidak ada himpunan tertutup terbatas K.
€ Kasus R =
Mengikuti bukti Teorema Cauchy-Hadamard, didapatkan bahwa ada M € N sehingga

lapz™| < ", untukn > M,z € K

dengan 0 < ¢ < 1. Karena 0 < ¢ < 1, maka deret Zc” konvergen. Dengan menerapkan
uji-M Weierstrass didapatkan deret Z a,z" konvergen seragam.
[

I3~ Catatan 3.4
Perhatikan deret berikut:

1 1
n —.n - .n
Yat, Yt Y
Dapatkan jari-jari konvergensi dari masing-masing deret. Apakah masing-masing deret kon-
vergen di z = 17 Apakah masing-masing deret konvergen di x = —17

LEENEIRB YA Integral Deret Pangkat
Deret pangkat selalu konvergen ke suatu fungsi kontinu pada intreval konvergensi. Deret
pangkat bisa diintegralkan suku demi suku pada interval tertutup dan terbatas yang ter-
muat dalam interval konvergensi.

Bukti. Jika |xo| < R, maka berdasarkan Teorema 3.3.1 (teorem konvergen seragam pada
deret pangkat) didapatkan bahwa Zanl‘” konvergen seragam pada sebarang persekitaran
tertutup terbatas dari 2y yang termuat di dalam (— R, R). Kekontinuan di z, didapatkan dari
Teorema 3.3 (teorema deret fungsi kontinu) dan integral suku demi suku didapatkan dari
Teorema 3.3 (teorema deret fungsi terintegral). [

LCCTUEICREE Turunan Deret Pangkat

Deret pangkat bisa diturunkan suku demi suku pada interval konvergensi, yaitu

Jika f(x) = Z anz" maka f'(z) = Z na,z" ! untuk |z| < R.
n=1

n=0
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Kedua deret mempunya radius konvergensi yang sama.

Bukti. Karena lim(n'/™) = 1, barisan (|na,|'/™) terbatas jika dan hanya jika barisan (|a,|'/")
terbatas.Lebih lanjut, amati bahwa

lim Sup(|nan]1/") = lim sup(\anll/").

Oleh karena itu, dua deret > |na,,|'/" dan " |a,|'/" mempunyai jari-jari konvergensi yang
sama sehingga berdasarkan Teorema 3.3.1 (teorem konvergen seragam pada deret pangkat)
didapatkan bahwa kedua deret konvergen seragam pada semua interval tertutup dan ter-
batas yang termuat pada jari-jari konvergensi. Selanjutnya dengan menerapkan Teorema 3.3,
didapatkan Z(nanx”_l) konvergen ke turunan dari f. [ |

Perlu diperhatikan bahwa teorema tersebut tidak memberikan pernyataan tentang titik
akhir interval konvergensi. Jika suatu deret konvergen pada suatu titik akhir, maka deret yang
terdiferensiasi mungkin konvergen atau tidak konvergen pada titik tersebut. Misalnya, deret
Z 2" /n* konvergen di kedua titik ujung = = —1 dan = = 1. Namun, deret terdiferensiasi yang
diberikan oleh Y " 2"~! /n konvergen di 2 = —1 tetapi divergen di z = 1.

LG CUEIR U Teorema Ketunggalan

Jika kedua deret Z anx™ dan Z b,z" konvergen ke fungsi f pada interval (—r, ) dengan
r > 0, maka
an = b, untuk semua n € N.

Bukti. a, = b, didapat dari nla, = £ (0) = nlb,,. n

KA Latihan

1. Jika Z a, merupakan deret konvergen mutlak, maka deret Z ay, sin nx konvergen mutlak
dan seragam.

2. Misalkan (¢, ) adalah barisan bilangan positif yang menurun. Jika ch sin nxz konvergen
seragam, maka lim(nc,,) = 0.

3. Tunjukkan bahwa jari-jari konvergensi R dari deret pangkat Z anz" diberikan oleh lim(|a,, /an+1])
saat limit ini ada. Berikan contoh deret pangkat yang limitnya tidak ada.

4. Jika 0 < p < |ay| < quntuk semua n € N, dapatkan radius konvergensi dari deret Z anz”.

5. Misal f(z) = Zanx" untuk |z| < R. Jika f(x) = f(—x) untuk semua |z| < R, tunjukkan
bahwa a,, = 0 untuk semua n yang ganijil.
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SF\X:¥ Pengantar Topologi

Wl Himpunan Terbuka, Tertutup, dan Kompak

IS Persekitaran

Persekitaran dari titik + € R adalah sebarang himpunan V' yang memuat suatu
persekitaran-e dari z untuk suatu ¢ > 0.

I3 Catatan 4.1
Untuk & > 0, himpunan (z — e,z + &) adalah persekitaran dari titik z.

IS Himpunan Terbuka dan Himpunan Tertutup
(i) Himpunan G ¢ R disebut terbuka di R jika untuk setiap = € G ada persekitaran V' dari
x sedemikan sehingga V' C G. (ii) Himpunan F C R disebut tertutup di R jika F* = R\ F
terbuka di R.

[ Catatan 4.2
ntuk menunjukkan bahwa G C R terbuka, cukup dengan menunjukkan bahwa setiap titik

di G mempunyai persekitaran-¢ yang termuat di G. Sedangkan, untuk menunjukkan bahwa
F C R tertutup, cukup dengan menunjukkan bahwa F° terbuka yakni setiap titik di F°
mempunyai persekitaran-¢ yang termuat di F*°.

Contoh 4.1

Periksa apakah masing-masing himpunan berikut ini tertutup, terbuka atau bukan ked-
uanya.

1. R

2.G:=(0,1)

3.1:=(a,b)

4..J:=1[0,1]

5 H=1[0,1)

6.2

(a) Gabungan dari sebarang (berhingga atau tak-berhingga) koleksi himpunan terbuka di
R adalah terbuka. (b) Irisan dari koleksi berhingga himpunan terbuka di R adalah terbuka.

Bukti. Gunakan sifat himpunan dan definisi himpunan terbuka.
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Catatan: Perhatikan bahwa N2 (0,1 + 1/n) = (0, 1]. [
(a) Irisan dari sebarang (berhingga atau tak-berhingga) koleksi himpunan tertutup di R

adalah tertutup. (b) Gabungan dari koleksi berhingga himpunan tertutup di R adalah ter-
tutup.

Bukti. Gunakan definisi himpunan tertutup dan kemudian gunakan sifat himpunan terbuka.
Catatan: Perhatikan bahwa U}~ (0,1 — 1/n] = [0,1). [ |

L EUER S Karakteristik Himpunan Tertutup
Jika F' C R, maka argumen di bawah ini ekivalen:

(i) F tertutup di R;
(ii) Jika X = (z,,) adalah barisan di F' yang konvergen, maka lim(z,,) berada di F.

Bukti. (i) = (ii) Misalkan X = (z,,) adalah barisan elemen di ' dan misalkan z := lim X;
akan ditunjukkan bahwa x € F'. Ini akan ditunjukkan secara kontradiksi, yaitu misalkan seba-
liknya x € F°. Karena F* terbuka dan = € F'“, maka terdapat ¢ > 0 sehingga V. () terdapat di
dalam F*. Karena = = lim(x,,), maka terdapat bilangan asli K = K (¢) sehingga zx € V.(z).
Oleh karena itu haruslah x; € F*¢; tetapi hal ini bertentangan dengan asumsi bahwa z,, € F
untuk semua n € N. Oleh karena itu, kita menyimpulkan bahwa z € F.

(i) = (i) Akan ditunjukkan secara kontradiksi. Misalkan F tidak tertutup, sehingga G := F*°
tidak terbuka. Maka terdapat suatu titik yo € G sehingga untuk setiap ¢ > 0 ada y* € V.(yo)
tetapi y* € G° = F. Sekarang pilih e = 1/n dengan n € N, sehingga didapatkan y,, € V-(vo)
tetapi y, € G° = F. Sekarang bisa diamati bahwa barisan (y,,) yang dikonstruksi di atas
adalah barisan di F' dan konvergen ke 3, € F°. Hal ini kontradiksi dengan (ii). Sehingga
haruslah F tertutup. [ |

Recall: Titik « adalah titik klaster dari himpunan F' C A jika untuk setiap ¢ > 0 persekitaran
V(x) memuat titik di 7' selain x.

LCICUE A Titik Klaster
Himpunan S tertutup di R jika dan hanya jika S memuat semua titik klasternya.

Bukti. Misalkan S adalah himpunan tertutup di R dan misalkan x adalah titik cluster dari S;
kita akan menunjukkan bahwa x € S. Dengan kontradiksi misal x termasuk dalam himpunan
terbuka x € S¢. Oleh karena itu terdapat ¢ > 0 sehingga V.(z) C S¢. Akibatnya V.(z)NS =9
yang bertentangan dengan asumsi bahwa x adalah titik cluster dari F.

Sebaliknya, misalkan S adalah himpunan bagian dari R yang berisi semua titik klasternya;
kita akan menunjukkan bahwa S terbuka. Karena jika y € S, maka y bukan merupakan
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titik cluster dari S. Oleh karena itu terdapat ¢ > 0 sehingga V.(y) tidak mengandung titik
S (kecuali mungkin y). Namun karena y € S¢, maka V.(y) C S°. Karena y adalah elemen
sembarang dari ', dapat disimpulkan bahwa untuk setiap titik di F“ terdapat persekitaran-¢
yang seluruhnya terdapat di F°. Ini artinya F'“ terbuka di R dan oleh karena itu F' tertutup di
R. [ |

L EUER X Karakteristik Himpunan Terbuka
impunan S terbuka di R jika dan hanya jika S merupakan gabungan dari interval terbuka
di R yang saling asing dan banyaknya terhitung.

Bukti. Misalkan G # 0 merupakan himpunan terbuka di R. Untuk setiap = € G, misalkan
Ay :={a €R: (a,z] C G} dan misalkan B, := {b € R : [z,b) C G}. Karena G terbuka, maka
A, dan B, tidak kosong. Jika himpunan A, terbatas di bawah, didefinisikan a,. := inf A,; jika
A, tidak terbatas di bawabh, kita tetapkan a, := —oco. Perhatikan bahwa dalam kedua kasus
a, ¢ G. Jika himpunan B, terbatas di atas, maka ditetapkan b, := sup B,; jika B, tidak
terbatas di atas, ditetapkan b, = +oc. Perhatikan bahwa dalam kedua kasus b, ¢ G.

Sekarang definisikan I, = (a,,b,). Bisa diamati bahwa I, adalah interval terbuka yang
memuat z. Kita klaim bahwa I, € G. Untuk melihat ini, misalkan y € I, dan ditentukan
y < x. Ini mengikuti dari definisi a, bahwa ada ¢’ € A, dengan ¢’ < y dan oleh karena itu
y € (d’,x] C G. Demikian pula, jika y € I, dan ditentukan = < y, maka ada ' € B, dengan
y <V, makay € [z,0) C G. Karena y € I, sebarang, kita mendapatkan 7, C G.

Karena = sebarang di GG, dapat disimpulkan bahwa U, I, C G. Sebaliknya, karena untuk
setiap G terdapat interval terbuka 7, dengan x € I,, didapatkan G C U,c¢ ... Oleh karena itu
kita simpulkan - G = U,eq 1.

Sekarang klaim bahwa jika z,y € G dan = # y, maka I, = I,, atau I, N I, = @. Untuk
membuktikan ini misalkan z € I, N I,, dan diperoleh a, < z < b, dana, < z < b,. Akan
ditunjukkan bahwa a, = a,. Jika tidak, maka dari Sifat Trikotomi dapat disimpulkan bahwa
(i) ay < ay, atau (i) a, < a,. Dalam kasus (i), didapatkan a, € I, = (a;,b;) € G, yang
bertentangan dengan fakta bahwa a, ¢ G. Demikian pula pada kasus (i), didapatkan a, €
I, = (ay,b,) C G yang bertentangan dengan fakta bahwa a, ¢ G. Oleh karena itu didapatkan
a, = a, dan dengan argumen yang serupa menyiratkan bahwa b, = b,. Oleh karena itu, bisa
disimpulkan bahwa jika I, N I, ¢ @ maka I, = I,.

Selanjutnya akan ditunjukkan bahwa kumpulan interval-interval berbeda {1, : « € G} ter-
hitung. Caranya, dihitung himpunan @ dari bilangan rasional Q) = {ry,r9,--- }. Berdasarkan
Teorema kepadatan, didapatkan bahwa setiap interval I,, memuat bilangan rasional; sekarang
pilih bilangan rasional di I, yang memiliki indeks n terkecil dalam pencacahan Q ini, yakni dip-
ilih 7,y € Q sehingga I, = I, . dann(z) adalah indeks terkecil n sehingga I, = I,. Jadi
himpunan interval berbeda I, € G, dikorespondensikan dengan himpunan bagian dari N.
Oleh karena itu, himpunan interval berbeda ini dapat dihitung. [ |
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PG Himpunan Cantor
Himpunan Cantor [F adalah irisan dari himpunan F,,, n € N, dengan Fy = [0, 1] dan F,,
n = 1,2,---, adalah himpunan di R yang diperoleh secara iteratif dengan menghapus
sepertiga tengah terbuka dari masing-masing interval tertutup di F,, ;.

Karena [ irisan dari himpunan tertutup, sehingga himpunan [ tertutup. Selain itu [ juga
mempunyai sifat lainnya, yaitu
1. Total panjang interval terbuka yang dihapus adalah 1.
2. Himpunan Cantor [ tidak memuat interval terbuka tak kosong.

3. Himpunan Cantor [ adalah himpunan tak terhitung.

BIRNISI X Cover Terbuka
Diberikan himpunan A C R. Cover terbuka dari A adalah koleksi ¢ = {G,
G, terbuka di R dan « € I} sehingga

A g UO&EIGO#

Jika G’ subkoleksi dari G sehingga gabungan dari himpunan-himpunan di G’ juga memuat
A, maka G’ disebut cover bagian dari G. Lebih lanjut, jika anggota himpunan-himpunan g’
berhingga maka G’ disebut cover bagian berhingga.

[ Catatan 4.3
Suatu himpunan mungkin mempunyai beberapa cover terbuka. Sebagai contoh, jika A :=

[1,00), maka cover terbukanya adalah

Go = {(0,00)},

G = {(r—1r+1):7€Q,r >0},
Go = {(n—1,n+1):neN},

Gs = {(0,n):neN},

Gs = {(0,n):neN,n>23}

ISR Himpunan Kompak

Himpunan A C R dikatakan kompak jika untuk setiap cover terbuka dari A mempunyai
cover bagian berhingga. Dengan kata lain, untuk setiap cover terbuka G = {G, : « € I}
dari A, terdapat oy, as, - - - , o Sehingga

| ﬂ

1< Yo
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Dari Definisi himpunan kompak di atas, himpunan H dikatakan tidak kompak jika terda-
pat cover terbuka G dari H tetapi gabungan berhingga dari himpunan-himpunan di G tidak
memuat H.

Dari contoh-contoh cover terbuka di atas, himpunan A = [0, c0) tidak kompak karena
G4 adalah cover terbuka dari A akan tetapi untuk setiap {ni,n2,--- ,n;r} € N berlaku A ¢

Contoh 4.2

Diketahui K = {xj,x9,---,x,} merupakan himpunan bagian berhingga dari R.
Diberikan sebarang cover terbuka G = {G, : « € I}. Untuk setiap z;,1 < i < n

berlaku
1 € Gal

o € Ga2

#p € Gaye

Akibatnya gabungan dari himpunan-himpunan di koleksi {G,,, Ga,, - - , G4, } memuat
K. Jadi, K kompak.

Sifat Himpunan Kompak

Jika K kompak di R, maka K tertutup dan terbatas.

Bukti. Pertama-tama akan ditunjukkan bahwa K terbatas. Untuk setiap m € N, misalkan
H,, = (—m,m). Karena setiap H,, terbuka dan karena K C Uy°_,H,, = R, bisa dilihat
bahwa koleksi {H,, : m € N} adalah cover terbuka dari K. Karena K kompak, koleksi ini
memiliki subcover yang terbatas, sehingga terdapat M € N sehingga

KcUM_H, =Hy=(-M,M).

Oleh karena itu K terbatas, karena K termuat dalam interval berbatas (—M, M).

Sekarang akan ditunjukkan bahwa K tertutup, dengan menunjukkan bahwa komplemen-
nya K terbuka. Untuk melakukannya, misalkan « sebarang di K dan untuk setiap n € N,
didefinisikan G,, := {y € R : |y — u| > 1/n}. Bisa diperhatikan bahwa G,, terbuka untuk
n € Ndan R\{u} = Uy, G,.. Karena u ¢ K, didapatkan K C U;_;G,,. Lebih lanjut, karena
K kompak, diperoleh bahwa ada m € N sedemikian sehingga

K CU™,Gp =G

Oleh karenaitu K N (u—1/m,u+1/m) = @, sehingga interval (v — 1/m,u+1/m) = K°. Tapi
karena u adalah titik sembarang di K¢, bisa disimpulkan bahwa K*“ terbuka. [ |
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LECICIUER R Heine-Borel
Himpunan K C R kompak jika dan hanya jika tertutup dan terbatas.

Bukti. Telah ditunjukkan pada Teorema 4.1 bahwa himpunan kompak di R tertutup dan ter-
batas. Untuk membuktikan kebalikannya, misalkan K tertutup dan terbatas, dan misalkan
G = {G} adalah cover terbuka dari K. Sekarang, akan ditunjukkan bahwa K terdapat dalam
gabungan beberapa subkoleksi berhingga dari G. Buktinya dilakukan secara kontradiksi. Misal
diasumsikan bahwa:

K tidak terkandung dalam gabungan sejumlah himpunan berhingga di G. (4.7

Dari hipotesis, K terbatas, sehingga terdapat » > 0 sehingga K C [—r,r]. Misalkan I; :=
[—r, 7] dan bagi I; menjadi dua subinterval tertutup 7] := [—7,0] dan I := [0, r]. Setidaknya
salah satu dari dua himpunan bagian K N I} dan K n I{ tidak kosong dan mempunyai sifat
tidak termuat dalam gabungan sejumlah berhingga himpunan di G. [Sebab jika kedua him-
punan K N 1] dan K N I termuat dalam gabungan sejumlah berhingga himpunan di G, maka
K = (K nIj)u (K n1IY)termuat dalam gabungan sejumlah berhingga himpunan di G, kon-
tradiksi dengan asumsi (4.1).] Jika K nI] tidak termuat dalam gabungan sejumlah berhingga
himpunan di G, maka dimisalkan I = I7; Selain itu jika K N I} tidak termuat dalam gabungan
sejumlah berhingga himpunan di G maka dimisalkan 7, = I7.

Sekarang bagi I, menjadi dua subinterval tertutup 7/, dan I7). Jika K N I, tidak kosong dan
tidak termuat dalam gabungan sejumlah berhingga himpunan di G, maka dimisalkan 75 := I;
selain itu jika K N I tidak kosong dan tidak termuat dalam gabungan sejumlah berhingga
himpunan di G, maka dimisalkan I3 := 1.

Lanjutkan proses ini, diperoleh barisan interval bersarang (7,,). Berdasarkan Sifat Interval
Bersarang, terdapat sebuah titik z yang terdapat di semua I,,, n € N. Karena setiap interval
I,, memuat sebanyak tak-berhingga titik di A, sehingga didapat titik = adalah titik klaster dari
K . Selain itu, karena K diasumsikan tertutup, didapat » € K. Oleh karena itu ada himpunan
G, di G dengan z € ). Karena G, terbuka, didaptakan bahwa ada ¢ > 0 sehingga

(z—eg,24+¢) CGy.

Sebaliknya, karena interval I,, diperoleh melalui pembagian dua dari I, = [—r, 7], didap-
atkan panjang I,, adalah r/2" 2. Oleh karena itu, jika n sangat besar sehingga /2" 2 < ¢
dan I, C (z — e,z + ¢) C G,. Tetapi ini berarti bahwa jika n diambil sedemikian sehingga
r/2""% < ¢, maka K N I, termuat dalam himpunan tunggal G di G. Ini kontradiksi dengan
konstruksi dari I,,. Kontradiksi ini menunjukkan bahwa asumsi (4.1) tidak benar, sehingga
dapat disimpulkan bahwa K kompak. [ |
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Teorema 4.6

Himpunan K C R kompak jika dan hanya jika setiap barisan di K mempunya sub-barisan
yang konvergen ke titik di K.

Bukti. Misalkan K kompak dan misalkan (z,,) suatu barisan dengan z,, € K untuk semua
n € N. Berdasarkan Teorema Heine-Borel, himpunan K terbatas sehingga barisan (z,,) juga
terbatas; berdasarkan Teorema Bolzano-Weierstrass, terdapat subbarisan (z,, ) yang konver-
gen. Karena K tertutup, didapat limit 2 := lim(zn() di K. Jadi setiap barisan di K mempunyai
subbarisan yang konvergen ke suatu titik di K.

Sebaliknya, akan ditunjukkan bahwa jika K tidak tertutup atau tidak terbatas, maka pasti
ada barisan di K yang tidak mempunyai subbarisan yang konvergen ke titik di K. Pertama,
jika K tidak tertutup, maka ada a titik cluster ¢ dari K yang bukan di K. Karena ¢ adalah titik
klaster dari K, maka terdapat barisan (z,) dengan z,, € K dan z,, # c untuk semuan € N
sehingga lim(z,,) = ¢. Kemudian setiap subbarisan (z,,) juga konvergen ke ¢, dan karena
¢ # K, diapatkan bahwa tidak ada subbarisan yang konvergen ke titik di K.

Kedua, jika K tidak terbatas, maka ada barisan (z,,) di K sehingga |x,,| > n untuk se-
mua n € N. Sehingga, setiap subbarisan (z,) tidak berbatas, dan berimplikasi tidak ada
subbarisan yang konvergen ke titik di K. [ |

W Latihan

1. Tunjukkan bahwa himpunan N tertutup di R.

2. Tunjukkan bahwa A = {1/n : n € N} bukan himpunan tertutup tetapi A U {0} himpunan
tertutup.

3. Tunjukkan bahwa jika G himpunan terbuka dan F himpunan tertutup, maka G\ F" himpunan
terbuka dan F'\G himpunan tertutup.

4. Tunjukkan bahwa himpunan G C R terbuka jika dan hanya jika tidak memuat titik batasnya.

[&,]

. Tunjukkan bahwa himpunan F C R tertutup jika dan hanya jika ia memuat semua titik
batasnya.

. Dapatkan cover terbuka dari interval (1, 2] yang tidak punya subcover yang berhingga.
. Dapatkan cover terbuka dari N yang tidak punya subcover yang berhingga.

. Dapatkan cover terbuka dari {1/n : n € N} yang tidak punya subcover yang berhingga.

© 0 ~N o

. Buktikan menggunakan definisi kompak bahwa jika F' adalah himpunan bagian dari him-
punan kompak K di R dan F tertutup, maka ' kompak.

10. Buktikan menggunakan definisi kompak bahwa jika K; dan K, himpunan kompak di R,
maka K; U Ky kompak.
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WAl Ruang Metrik

PN Ruang Metrik

Diberikan sebarang himpunan tak kosong X. Fungsid : X x X — R yang memenubhi
sifat-sifat

M1. d(x,y) > 0 untuk setiap x,y € X (kepositifan)

M2. d(z,y) = 0 jika dan hanya jika z = y (definit positif)

M3. d(z,y) = d(y, z) untuk setiap =,y € X (simetris)

M4. d(z,y) < d(z,z) + d(y, z) untuk setiap z,y, z € X (Ketaksamaan segitiga)

disebut metrik pada X. Pasangan (X, d) disebut dengan ruang metrik.

Contoh 4.3

S d(x,y) = |z —y|luntuk z,y € R.

R d(P,P) = \/(:cl — 29)2 + (y3 + y3), untuk Py = (z1,41), Py = (29, 12) € R2.
% d\ (P, Py) = |z1 — 22| + |y1 — y2|, untuk P, = (z1,11), Po = (22, 12) € R

% doo(Pr, Py) = sup{|z1 — 22|, |y1 — y2|}, untuk Py = (x1, 1), P> = (z2,72) € R2

& doo(f,g9) = sup{|f(z) — g(x)| : « € [0,1]}, untuk f dan ¢ fungsi kontinu pada interval
[0,1] ke R.

S di(f,9g) / |f — g/, untuk f dan g fungsi kontinu pada interval [0, 1] ke R.

<t Misal S himpunan tak-kosong.
0 jikas=t

d(s,t) := , untuk s, t € S.
1 jikas #t.

IS Persekitaran

Misal (S, d) ruang metrik. Untuk £ > 0, persekitaran-s dari titik ( di S adalah himpunan
Ve(zo) :={x € S : d(zo,x) < €}.

Persekitaran dari x( adalah sebarang himpunan U yang memuat persekitaran-c dari z(
untuk suatu e > 0.

PISNINX M Konvergensi

Misal (x,,) barisan di ruang metrik (S, d). Barisan (z,,) dikatakan konvergen ke = € S jika
untuk setiap ¢ > 0 ada K € N sedemikian sehingga x,, € V.(z) untuk semuan > K.

Catatan: Karena z,, € V.(z) jika dan hanya jika d(x,,x) < e. Oleh karena itu, barisan
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(x,,) dikatakan konvergen ke z jika dan hanya jika untuk setiap ¢ > 0 ada K € N sedemikian
sehingga d(z,, z) < ¢ untuk semuan > K. Dengan kata lain, barisan (z,,) di (S, d) konvergen
ke x jika dan hanya jika barisan bilangan real (d(x,, x)) konvergen ke nol.

Contoh 4.4

Diberikan R* dengan metrik d(P,P,) = \/(ar1 —x9)2 4 (y? +93), untuk P, =
(x1,11), P2 = (x2,y2) € R2. Jika (P,) = (xn,yn) untuk setiap n € N, maka dapat
dinyatakan bahwa barisan (P,) konvergen ke P = (z,y) terhadap metrik ini jika dan
hanya jika barisan bilangan real (z,,) dan (y,,) masing-masing konvergen ke = dan y.

ISR Barisan Cauchy

Misal (S, d) ruang metrik. Barisan (z,,) di S dikatakan barisan Cauchy jika untuk setiap
e > 0,ada H € N sedemikian sehingga d(x,, x,,) < £ untuk semuan,m > H.

Definisi 4.10

Ruang metrik (S, d) dikatakan komplit jika semua barisan Cauchy di S konvergen ke
suatu titik di S.

Contoh 4.5

$¢ Ruang C'[0, 1] dengan metric d, adalah ruang yang lengkap.

€t Ruang C'[0, 1] dengan metric d; adalah ruang yang tidak lengkap.

IS N YR Himpunan Terbuka dan Himpunan Tertutup
Misal (S, d) ruang metrik. Himpunan bagian G dari S dikatakan himpunan terbuka di

S jika untuk setiap titik = € S ada persekitaran U dari x sedemikian sehingga U C G.
Himpunan bagian F dari S dikatakan himpunan tertutup di S jika F'“ = S\ F' himpunan
terbuka di S.

Definisi 4.12

Misal (S1,d;) dan (S, d2) ruang metrik dan misal f : S; — S, adalah fungsi dari S; ke
Sy. Fungsi f dikatakan kontinu di titik ¢ di S; jika untuk setiap persikataran-c dari f(c)
ada persekitaran-g dari ¢ sedemikian sehingga jika = € Vs(c) maka f(z) € V.(f(c)).

[~ Catatan 4.4
Formulasi € — 0 dari kekontinuan bisa dituliskan sebagai berikut: f : S7 — So kontinu di ¢

jika dan hanya jika untuk setiap £ > 0 ada 6 > 0 sedemikian sehingga d; (z,c) < ¢ berakibat
d2(f(z), f(c)) <e.
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4.2. RUANG METRIK 4. PENGANTAR TOPOLOGI

LELICIOEREN @ Kontinu Global
Jika (S1,d1) dan (S, d2) ruang metrik, maka fungsi f : S1 — S kontinu pada S, jika dan
hanya jika f~'(G) terbuka di S| saat G terbuka di Ss.

I3 Catatan 4.5
Ruang metrik (S, d) dikatakan kompak jika untuk setiap cover terbuka dari S mempunyai

berhingga subcover.

Mempertahankan Kekompakan

Jika (S, d) ruang metrik yang kompak dan jika f : S — R kontinu, maka f(S) kompak di
R.

IS K Semimetrik

Semimetrik pada himpunan S adalah fungsi d : S x S — R yang memenuhi kondisi
(M1), (M3) dan (M4) dari definisi metrik dan

d(z,y) =0jikaz =y.

Ruang semimetrik (.S, d) adalah himpunan S bersama dengan semimetrik d pada S.

SRl Latihan

1. Tunjukkan bahwa himpunan N tertutup di R.

2. Tunjukkan bahwa A = {1/n : n € N} bukan himpunan tertutup tetapi A U {0} himpunan
tertutup.

3. Tunjukkan bahwa jika G himpunan terbuka dan F himpunan tertutup, maka G\ F" himpunan
terbuka dan F'\G himpunan tertutup.

4. Tunjukkan bahwa himpunan G C R terbuka jika dan hanya jika tidak memuat titik batasnya.

[&,]

. Tunjukkan bahwa himpunan F C R tertutup jika dan hanya jika ia memuat semua titik
batasnya.

. Dapatkan cover terbuka dari interval (1, 2] yang tidak punya subcover yang berhingga.
. Dapatkan cover terbuka dari N yang tidak punya subcover yang berhingga.

. Dapatkan cover terbuka dari {1/n : n € N} yang tidak punya subcover yang berhingga.

© 0 ~N o

. Buktikan menggunakan definisi kompak bahwa jika F' adalah himpunan bagian dari him-
punan kompak K di R dan F' tertutup, maka F' kompak.

10. Buktikan menggunakan definisi kompak bahwa jika K; dan K, himpunan kompak di R,
maka K; U K kompak.
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